File size: 8,137 Bytes
1085335 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import torch
import json
import re
import unicodedata
import numpy as np
import regex
from types import SimpleNamespace
from LOAD.models import DurationNet, SynthesizerTrn
import scipy.io.wavfile as wav
config_file = "config.json"
duration_model_path = "duration_model.pth"
lightspeed_model_path = "gen_630k.pth"
phone_set_file = "phone_set.json"
device = "cuda" if torch.cuda.is_available() else "cpu"
with open(config_file, "rb") as f:
hps = json.load(f, object_hook=lambda x: SimpleNamespace(**x))
# Load phone set json file
with open(phone_set_file, "r") as f:
phone_set = json.load(f)
assert phone_set[0][1:-1] == "SEP"
assert "sil" in phone_set
sil_idx = phone_set.index("sil")
space_re = regex.compile(r"\s+")
number_re = regex.compile("([0-9]+)")
digits = ["không", "một", "hai", "ba", "bốn", "năm", "sáu", "bảy", "tám", "chín"]
num_re = regex.compile(r"([0-9.,]*[0-9])")
alphabet = "aàáảãạăằắẳẵặâầấẩẫậeèéẻẽẹêềếểễệiìíỉĩịoòóỏõọôồốổỗộơờớởỡợuùúủũụưừứửữựyỳýỷỹỵbcdđghklmnpqrstvx"
keep_text_and_num_re = regex.compile(rf"[^\s{alphabet}.,0-9]")
keep_text_re = regex.compile(rf"[^\s{alphabet}]")
def read_number(num: str) -> str:
if len(num) == 1:
return digits[int(num)]
elif len(num) == 2 and num.isdigit():
n = int(num)
end = digits[n % 10]
if n == 10:
return "mười"
if n % 10 == 5:
end = "lăm"
if n % 10 == 0:
return digits[n // 10] + " mươi"
elif n < 20:
return "mười " + end
else:
if n % 10 == 1:
end = "mốt"
return digits[n // 10] + " mươi " + end
elif len(num) == 3 and num.isdigit():
n = int(num)
if n % 100 == 0:
return digits[n // 100] + " trăm"
elif num[1] == "0":
return digits[n // 100] + " trăm lẻ " + digits[n % 100]
else:
return digits[n // 100] + " trăm " + read_number(num[1:])
elif len(num) >= 4 and len(num) <= 6 and num.isdigit():
n = int(num)
n1 = n // 1000
return read_number(str(n1)) + " ngàn " + read_number(num[-3:])
elif "," in num:
n1, n2 = num.split(",")
return read_number(n1) + " phẩy " + read_number(n2)
elif "." in num:
parts = num.split(".")
if len(parts) == 2:
if parts[1] == "000":
return read_number(parts[0]) + " ngàn"
elif parts[1].startswith("00"):
end = digits[int(parts[1][2:])]
return read_number(parts[0]) + " ngàn lẻ " + end
else:
return read_number(parts[0]) + " ngàn " + read_number(parts[1])
elif len(parts) == 3:
return (
read_number(parts[0])
+ " triệu "
+ read_number(parts[1])
+ " ngàn "
+ read_number(parts[2])
)
return num
def text_to_phone_idx(text):
# lowercase
text = text.lower()
# unicode normalize
text = unicodedata.normalize("NFKC", text)
text = text.replace(".", " . ")
text = text.replace(",", " , ")
text = text.replace(";", " ; ")
text = text.replace(":", " : ")
text = text.replace("!", " ! ")
text = text.replace("?", " ? ")
text = text.replace("(", " ( ")
text = num_re.sub(r" \1 ", text)
words = text.split()
words = [read_number(w) if num_re.fullmatch(w) else w for w in words]
text = " ".join(words)
# remove redundant spaces
text = re.sub(r"\s+", " ", text)
# remove leading and trailing spaces
text = text.strip()
# convert words to phone indices
tokens = []
for c in text:
# if c is "," or ".", add <sil> phone
if c in ":,.!?;(":
tokens.append(sil_idx)
elif c in phone_set:
tokens.append(phone_set.index(c))
elif c == " ":
# add <sep> phone
tokens.append(0)
if tokens[0] != sil_idx:
# insert <sil> phone at the beginning
tokens = [sil_idx, 0] + tokens
if tokens[-1] != sil_idx:
tokens = tokens + [0, sil_idx]
return tokens
def text_to_speech(duration_net, generator, text):
# prevent too long text
# if len(text) > 500:
# text = text[:500]
phone_idx = text_to_phone_idx(text)
batch = {
"phone_idx": np.array([phone_idx]),
"phone_length": np.array([len(phone_idx)]),
}
# predict phoneme duration
phone_length = torch.from_numpy(batch["phone_length"].copy()).long().to(device)
phone_idx = torch.from_numpy(batch["phone_idx"].copy()).long().to(device)
with torch.inference_mode():
phone_duration = duration_net(phone_idx, phone_length)[:, :, 0] * 1000
phone_duration = torch.where(
phone_idx == sil_idx, torch.clamp_min(phone_duration, 200), phone_duration
)
phone_duration = torch.where(phone_idx == 0, 0, phone_duration)
# generate waveform
end_time = torch.cumsum(phone_duration, dim=-1)
start_time = end_time - phone_duration
start_frame = start_time / 1000 * hps.data.sampling_rate / hps.data.hop_length
end_frame = end_time / 1000 * hps.data.sampling_rate / hps.data.hop_length
spec_length = end_frame.max(dim=-1).values
pos = torch.arange(0, spec_length.item(), device=device)
attn = torch.logical_and(
pos[None, :, None] >= start_frame[:, None, :],
pos[None, :, None] < end_frame[:, None, :],
).float()
with torch.inference_mode():
y_hat = generator.infer(
phone_idx, phone_length, spec_length, attn, max_len=None, noise_scale=0.0
)[0]
wave = y_hat[0, 0].data.cpu().numpy()
return (wave * (2**15)).astype(np.int16)
def load_models():
duration_net = DurationNet(hps.data.vocab_size, 64, 4).to(device)
duration_net.load_state_dict(torch.load(duration_model_path, map_location=device))
duration_net = duration_net.eval()
generator = SynthesizerTrn(
hps.data.vocab_size,
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**vars(hps.model),
).to(device)
del generator.enc_q
ckpt = torch.load(lightspeed_model_path, map_location=device)
params = {}
for k, v in ckpt["net_g"].items():
k = k[7:] if k.startswith("module.") else k
params[k] = v
generator.load_state_dict(params, strict=False)
del ckpt, params
generator = generator.eval()
return duration_net, generator
def speak(text):
# Assuming load_models returns duration_net and generator
duration_net, generator = load_models()
paragraphs = text.split("\n")
clips = [] # List to store audio clips
max_chunk_length = 400 # Maximum number of characters in each chunk
for paragraph in paragraphs:
paragraph = paragraph.strip()
if paragraph == "":
continue
# Split the paragraph into chunks of maximum length max_chunk_length
chunks = [
paragraph[i : i + max_chunk_length]
for i in range(0, len(paragraph), max_chunk_length)
]
for chunk in chunks:
clips.append(text_to_speech(duration_net, generator, chunk))
# Assuming text_to_speech converts text to audio clip using the models
# Append silence if needed
# clips.append(silence)
# Concatenate all audio clips into one
y = np.concatenate(clips)
# Assuming hps.data.sampling_rate is defined somewhere
return hps.data.sampling_rate, y
def textToMp3(text, outWAV):
sampling_rate, audio = speak(text)
# Save the audio data to a WAV file
wav.write(outWAV, sampling_rate, audio)
textToMp3('bây giờ là mấy giờ', 'test.wav') |