File size: 9,488 Bytes
813828b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#!/usr/bin/env python3
"""Extract Mel spectrograms with teacher forcing."""
import argparse
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from TTS.config import load_config
from TTS.tts.datasets import TTSDataset, load_tts_samples
from TTS.tts.models import setup_model
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.utils.audio.numpy_transforms import quantize
from TTS.utils.generic_utils import count_parameters
use_cuda = torch.cuda.is_available()
def setup_loader(ap, r, verbose=False):
tokenizer, _ = TTSTokenizer.init_from_config(c)
dataset = TTSDataset(
outputs_per_step=r,
compute_linear_spec=False,
samples=meta_data,
tokenizer=tokenizer,
ap=ap,
batch_group_size=0,
min_text_len=c.min_text_len,
max_text_len=c.max_text_len,
min_audio_len=c.min_audio_len,
max_audio_len=c.max_audio_len,
phoneme_cache_path=c.phoneme_cache_path,
precompute_num_workers=0,
use_noise_augment=False,
verbose=verbose,
speaker_id_mapping=speaker_manager.name_to_id if c.use_speaker_embedding else None,
d_vector_mapping=speaker_manager.embeddings if c.use_d_vector_file else None,
)
if c.use_phonemes and c.compute_input_seq_cache:
# precompute phonemes to have a better estimate of sequence lengths.
dataset.compute_input_seq(c.num_loader_workers)
dataset.preprocess_samples()
loader = DataLoader(
dataset,
batch_size=c.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=None,
num_workers=c.num_loader_workers,
pin_memory=False,
)
return loader
def set_filename(wav_path, out_path):
wav_file = os.path.basename(wav_path)
file_name = wav_file.split(".")[0]
os.makedirs(os.path.join(out_path, "quant"), exist_ok=True)
os.makedirs(os.path.join(out_path, "mel"), exist_ok=True)
os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True)
os.makedirs(os.path.join(out_path, "wav"), exist_ok=True)
wavq_path = os.path.join(out_path, "quant", file_name)
mel_path = os.path.join(out_path, "mel", file_name)
wav_gl_path = os.path.join(out_path, "wav_gl", file_name + ".wav")
wav_path = os.path.join(out_path, "wav", file_name + ".wav")
return file_name, wavq_path, mel_path, wav_gl_path, wav_path
def format_data(data):
# setup input data
text_input = data["token_id"]
text_lengths = data["token_id_lengths"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
item_idx = data["item_idxs"]
d_vectors = data["d_vectors"]
speaker_ids = data["speaker_ids"]
attn_mask = data["attns"]
avg_text_length = torch.mean(text_lengths.float())
avg_spec_length = torch.mean(mel_lengths.float())
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda(non_blocking=True)
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
if d_vectors is not None:
d_vectors = d_vectors.cuda(non_blocking=True)
if attn_mask is not None:
attn_mask = attn_mask.cuda(non_blocking=True)
return (
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids,
d_vectors,
avg_text_length,
avg_spec_length,
attn_mask,
item_idx,
)
@torch.no_grad()
def inference(
model_name,
model,
ap,
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids=None,
d_vectors=None,
):
if model_name == "glow_tts":
speaker_c = None
if speaker_ids is not None:
speaker_c = speaker_ids
elif d_vectors is not None:
speaker_c = d_vectors
outputs = model.inference_with_MAS(
text_input,
text_lengths,
mel_input,
mel_lengths,
aux_input={"d_vectors": speaker_c, "speaker_ids": speaker_ids},
)
model_output = outputs["model_outputs"]
model_output = model_output.detach().cpu().numpy()
elif "tacotron" in model_name:
aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors}
outputs = model(text_input, text_lengths, mel_input, mel_lengths, aux_input)
postnet_outputs = outputs["model_outputs"]
# normalize tacotron output
if model_name == "tacotron":
mel_specs = []
postnet_outputs = postnet_outputs.data.cpu().numpy()
for b in range(postnet_outputs.shape[0]):
postnet_output = postnet_outputs[b]
mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T))
model_output = torch.stack(mel_specs).cpu().numpy()
elif model_name == "tacotron2":
model_output = postnet_outputs.detach().cpu().numpy()
return model_output
def extract_spectrograms(
data_loader, model, ap, output_path, quantize_bits=0, save_audio=False, debug=False, metada_name="metada.txt"
):
model.eval()
export_metadata = []
for _, data in tqdm(enumerate(data_loader), total=len(data_loader)):
# format data
(
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids,
d_vectors,
_,
_,
_,
item_idx,
) = format_data(data)
model_output = inference(
c.model.lower(),
model,
ap,
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids,
d_vectors,
)
for idx in range(text_input.shape[0]):
wav_file_path = item_idx[idx]
wav = ap.load_wav(wav_file_path)
_, wavq_path, mel_path, wav_gl_path, wav_path = set_filename(wav_file_path, output_path)
# quantize and save wav
if quantize_bits > 0:
wavq = quantize(wav, quantize_bits)
np.save(wavq_path, wavq)
# save TTS mel
mel = model_output[idx]
mel_length = mel_lengths[idx]
mel = mel[:mel_length, :].T
np.save(mel_path, mel)
export_metadata.append([wav_file_path, mel_path])
if save_audio:
ap.save_wav(wav, wav_path)
if debug:
print("Audio for debug saved at:", wav_gl_path)
wav = ap.inv_melspectrogram(mel)
ap.save_wav(wav, wav_gl_path)
with open(os.path.join(output_path, metada_name), "w", encoding="utf-8") as f:
for data in export_metadata:
f.write(f"{data[0]}|{data[1]+'.npy'}\n")
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data, speaker_manager
# Audio processor
ap = AudioProcessor(**c.audio)
# load data instances
meta_data_train, meta_data_eval = load_tts_samples(
c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
)
# use eval and training partitions
meta_data = meta_data_train + meta_data_eval
# init speaker manager
if c.use_speaker_embedding:
speaker_manager = SpeakerManager(data_items=meta_data)
elif c.use_d_vector_file:
speaker_manager = SpeakerManager(d_vectors_file_path=c.d_vector_file)
else:
speaker_manager = None
# setup model
model = setup_model(c)
# restore model
model.load_checkpoint(c, args.checkpoint_path, eval=True)
if use_cuda:
model.cuda()
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
# set r
r = 1 if c.model.lower() == "glow_tts" else model.decoder.r
own_loader = setup_loader(ap, r, verbose=True)
extract_spectrograms(
own_loader,
model,
ap,
args.output_path,
quantize_bits=args.quantize_bits,
save_audio=args.save_audio,
debug=args.debug,
metada_name="metada.txt",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config_path", type=str, help="Path to config file for training.", required=True)
parser.add_argument("--checkpoint_path", type=str, help="Model file to be restored.", required=True)
parser.add_argument("--output_path", type=str, help="Path to save mel specs", required=True)
parser.add_argument("--debug", default=False, action="store_true", help="Save audio files for debug")
parser.add_argument("--save_audio", default=False, action="store_true", help="Save audio files")
parser.add_argument("--quantize_bits", type=int, default=0, help="Save quantized audio files if non-zero")
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
args = parser.parse_args()
c = load_config(args.config_path)
c.audio.trim_silence = False
main(args)
|