File size: 5,472 Bytes
813828b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import torch
import torchaudio
from coqpit import Coqpit
from torch import nn

from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
from TTS.utils.generic_utils import set_init_dict
from TTS.utils.io import load_fsspec


class PreEmphasis(nn.Module):
    def __init__(self, coefficient=0.97):
        super().__init__()
        self.coefficient = coefficient
        self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0))

    def forward(self, x):
        assert len(x.size()) == 2

        x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect")
        return torch.nn.functional.conv1d(x, self.filter).squeeze(1)


class BaseEncoder(nn.Module):
    """Base `encoder` class. Every new `encoder` model must inherit this.

    It defines common `encoder` specific functions.
    """

    # pylint: disable=W0102
    def __init__(self):
        super(BaseEncoder, self).__init__()

    def get_torch_mel_spectrogram_class(self, audio_config):
        return torch.nn.Sequential(
            PreEmphasis(audio_config["preemphasis"]),
            # TorchSTFT(
            #     n_fft=audio_config["fft_size"],
            #     hop_length=audio_config["hop_length"],
            #     win_length=audio_config["win_length"],
            #     sample_rate=audio_config["sample_rate"],
            #     window="hamming_window",
            #     mel_fmin=0.0,
            #     mel_fmax=None,
            #     use_htk=True,
            #     do_amp_to_db=False,
            #     n_mels=audio_config["num_mels"],
            #     power=2.0,
            #     use_mel=True,
            #     mel_norm=None,
            # )
            torchaudio.transforms.MelSpectrogram(
                sample_rate=audio_config["sample_rate"],
                n_fft=audio_config["fft_size"],
                win_length=audio_config["win_length"],
                hop_length=audio_config["hop_length"],
                window_fn=torch.hamming_window,
                n_mels=audio_config["num_mels"],
            ),
        )

    @torch.no_grad()
    def inference(self, x, l2_norm=True):
        return self.forward(x, l2_norm)

    @torch.no_grad()
    def compute_embedding(self, x, num_frames=250, num_eval=10, return_mean=True, l2_norm=True):
        """
        Generate embeddings for a batch of utterances
        x: 1xTxD
        """
        # map to the waveform size
        if self.use_torch_spec:
            num_frames = num_frames * self.audio_config["hop_length"]

        max_len = x.shape[1]

        if max_len < num_frames:
            num_frames = max_len

        offsets = np.linspace(0, max_len - num_frames, num=num_eval)

        frames_batch = []
        for offset in offsets:
            offset = int(offset)
            end_offset = int(offset + num_frames)
            frames = x[:, offset:end_offset]
            frames_batch.append(frames)

        frames_batch = torch.cat(frames_batch, dim=0)
        embeddings = self.inference(frames_batch, l2_norm=l2_norm)

        if return_mean:
            embeddings = torch.mean(embeddings, dim=0, keepdim=True)
        return embeddings

    def get_criterion(self, c: Coqpit, num_classes=None):
        if c.loss == "ge2e":
            criterion = GE2ELoss(loss_method="softmax")
        elif c.loss == "angleproto":
            criterion = AngleProtoLoss()
        elif c.loss == "softmaxproto":
            criterion = SoftmaxAngleProtoLoss(c.model_params["proj_dim"], num_classes)
        else:
            raise Exception("The %s  not is a loss supported" % c.loss)
        return criterion

    def load_checkpoint(
        self,
        config: Coqpit,
        checkpoint_path: str,
        eval: bool = False,
        use_cuda: bool = False,
        criterion=None,
        cache=False,
    ):
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
        try:
            self.load_state_dict(state["model"])
            print(" > Model fully restored. ")
        except (KeyError, RuntimeError) as error:
            # If eval raise the error
            if eval:
                raise error

            print(" > Partial model initialization.")
            model_dict = self.state_dict()
            model_dict = set_init_dict(model_dict, state["model"], c)
            self.load_state_dict(model_dict)
            del model_dict

        # load the criterion for restore_path
        if criterion is not None and "criterion" in state:
            try:
                criterion.load_state_dict(state["criterion"])
            except (KeyError, RuntimeError) as error:
                print(" > Criterion load ignored because of:", error)

        # instance and load the criterion for the encoder classifier in inference time
        if (
            eval
            and criterion is None
            and "criterion" in state
            and getattr(config, "map_classid_to_classname", None) is not None
        ):
            criterion = self.get_criterion(config, len(config.map_classid_to_classname))
            criterion.load_state_dict(state["criterion"])

        if use_cuda:
            self.cuda()
            if criterion is not None:
                criterion = criterion.cuda()

        if eval:
            self.eval()
            assert not self.training

        if not eval:
            return criterion, state["step"]
        return criterion