File size: 81,849 Bytes
813828b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
import math
import os
from dataclasses import dataclass, field, replace
from itertools import chain
from typing import Dict, List, Tuple, Union

import numpy as np
import torch
import torch.distributed as dist
import torchaudio
from coqpit import Coqpit
from librosa.filters import mel as librosa_mel_fn
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
from trainer.torch import DistributedSampler, DistributedSamplerWrapper
from trainer.trainer_utils import get_optimizer, get_scheduler

from TTS.tts.configs.shared_configs import CharactersConfig
from TTS.tts.datasets.dataset import TTSDataset, _parse_sample
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
from TTS.tts.layers.vits.discriminator import VitsDiscriminator
from TTS.tts.layers.vits.networks import PosteriorEncoder, ResidualCouplingBlocks, TextEncoder
from TTS.tts.layers.vits.stochastic_duration_predictor import StochasticDurationPredictor
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.fairseq import rehash_fairseq_vits_checkpoint
from TTS.tts.utils.helpers import generate_path, maximum_path, rand_segments, segment, sequence_mask
from TTS.tts.utils.languages import LanguageManager
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.characters import BaseCharacters, BaseVocabulary, _characters, _pad, _phonemes, _punctuations
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment
from TTS.utils.io import load_fsspec
from TTS.utils.samplers import BucketBatchSampler
from TTS.vocoder.models.hifigan_generator import HifiganGenerator
from TTS.vocoder.utils.generic_utils import plot_results

##############################
# IO / Feature extraction
##############################

# pylint: disable=global-statement
hann_window = {}
mel_basis = {}


@torch.no_grad()
def weights_reset(m: nn.Module):
    # check if the current module has reset_parameters and if it is reset the weight
    reset_parameters = getattr(m, "reset_parameters", None)
    if callable(reset_parameters):
        m.reset_parameters()


def get_module_weights_sum(mdl: nn.Module):
    dict_sums = {}
    for name, w in mdl.named_parameters():
        if "weight" in name:
            value = w.data.sum().item()
            dict_sums[name] = value
    return dict_sums


def load_audio(file_path):
    """Load the audio file normalized in [-1, 1]

    Return Shapes:
        - x: :math:`[1, T]`
    """
    x, sr = torchaudio.load(file_path)
    assert (x > 1).sum() + (x < -1).sum() == 0
    return x, sr


def _amp_to_db(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)


def _db_to_amp(x, C=1):
    return torch.exp(x) / C


def amp_to_db(magnitudes):
    output = _amp_to_db(magnitudes)
    return output


def db_to_amp(magnitudes):
    output = _db_to_amp(magnitudes)
    return output


def wav_to_spec(y, n_fft, hop_length, win_length, center=False):
    """
    Args Shapes:
        - y : :math:`[B, 1, T]`

    Return Shapes:
        - spec : :math:`[B,C,T]`
    """
    y = y.squeeze(1)

    if torch.min(y) < -1.0:
        print("min value is ", torch.min(y))
    if torch.max(y) > 1.0:
        print("max value is ", torch.max(y))

    global hann_window
    dtype_device = str(y.dtype) + "_" + str(y.device)
    wnsize_dtype_device = str(win_length) + "_" + dtype_device
    if wnsize_dtype_device not in hann_window:
        hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device)

    y = torch.nn.functional.pad(
        y.unsqueeze(1),
        (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
        mode="reflect",
    )
    y = y.squeeze(1)

    spec = torch.stft(
        y,
        n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=hann_window[wnsize_dtype_device],
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=False,
    )

    spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
    return spec


def spec_to_mel(spec, n_fft, num_mels, sample_rate, fmin, fmax):
    """
    Args Shapes:
        - spec : :math:`[B,C,T]`

    Return Shapes:
        - mel : :math:`[B,C,T]`
    """
    global mel_basis
    dtype_device = str(spec.dtype) + "_" + str(spec.device)
    fmax_dtype_device = str(fmax) + "_" + dtype_device
    if fmax_dtype_device not in mel_basis:
        mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
        mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
    mel = torch.matmul(mel_basis[fmax_dtype_device], spec)
    mel = amp_to_db(mel)
    return mel


def wav_to_mel(y, n_fft, num_mels, sample_rate, hop_length, win_length, fmin, fmax, center=False):
    """
    Args Shapes:
        - y : :math:`[B, 1, T]`

    Return Shapes:
        - spec : :math:`[B,C,T]`
    """
    y = y.squeeze(1)

    if torch.min(y) < -1.0:
        print("min value is ", torch.min(y))
    if torch.max(y) > 1.0:
        print("max value is ", torch.max(y))

    global mel_basis, hann_window
    dtype_device = str(y.dtype) + "_" + str(y.device)
    fmax_dtype_device = str(fmax) + "_" + dtype_device
    wnsize_dtype_device = str(win_length) + "_" + dtype_device
    if fmax_dtype_device not in mel_basis:
        mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
        mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
    if wnsize_dtype_device not in hann_window:
        hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device)

    y = torch.nn.functional.pad(
        y.unsqueeze(1),
        (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
        mode="reflect",
    )
    y = y.squeeze(1)

    spec = torch.stft(
        y,
        n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=hann_window[wnsize_dtype_device],
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=False,
    )

    spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
    spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
    spec = amp_to_db(spec)
    return spec


#############################
# CONFIGS
#############################


@dataclass
class VitsAudioConfig(Coqpit):
    fft_size: int = 1024
    sample_rate: int = 22050
    win_length: int = 1024
    hop_length: int = 256
    num_mels: int = 80
    mel_fmin: int = 0
    mel_fmax: int = None


##############################
# DATASET
##############################


def get_attribute_balancer_weights(items: list, attr_name: str, multi_dict: dict = None):
    """Create inverse frequency weights for balancing the dataset.
    Use `multi_dict` to scale relative weights."""
    attr_names_samples = np.array([item[attr_name] for item in items])
    unique_attr_names = np.unique(attr_names_samples).tolist()
    attr_idx = [unique_attr_names.index(l) for l in attr_names_samples]
    attr_count = np.array([len(np.where(attr_names_samples == l)[0]) for l in unique_attr_names])
    weight_attr = 1.0 / attr_count
    dataset_samples_weight = np.array([weight_attr[l] for l in attr_idx])
    dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight)
    if multi_dict is not None:
        # check if all keys are in the multi_dict
        for k in multi_dict:
            assert k in unique_attr_names, f"{k} not in {unique_attr_names}"
        # scale weights
        multiplier_samples = np.array([multi_dict.get(item[attr_name], 1.0) for item in items])
        dataset_samples_weight *= multiplier_samples
    return (
        torch.from_numpy(dataset_samples_weight).float(),
        unique_attr_names,
        np.unique(dataset_samples_weight).tolist(),
    )


class VitsDataset(TTSDataset):
    def __init__(self, model_args, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.pad_id = self.tokenizer.characters.pad_id
        self.model_args = model_args

    def __getitem__(self, idx):
        item = self.samples[idx]
        raw_text = item["text"]

        wav, _ = load_audio(item["audio_file"])
        if self.model_args.encoder_sample_rate is not None:
            if wav.size(1) % self.model_args.encoder_sample_rate != 0:
                wav = wav[:, : -int(wav.size(1) % self.model_args.encoder_sample_rate)]

        wav_filename = os.path.basename(item["audio_file"])

        token_ids = self.get_token_ids(idx, item["text"])

        # after phonemization the text length may change
        # this is a shameful 🤭 hack to prevent longer phonemes
        # TODO: find a better fix
        if len(token_ids) > self.max_text_len or wav.shape[1] < self.min_audio_len:
            self.rescue_item_idx += 1
            return self.__getitem__(self.rescue_item_idx)

        return {
            "raw_text": raw_text,
            "token_ids": token_ids,
            "token_len": len(token_ids),
            "wav": wav,
            "wav_file": wav_filename,
            "speaker_name": item["speaker_name"],
            "language_name": item["language"],
            "audio_unique_name": item["audio_unique_name"],
        }

    @property
    def lengths(self):
        lens = []
        for item in self.samples:
            _, wav_file, *_ = _parse_sample(item)
            audio_len = os.path.getsize(wav_file) / 16 * 8  # assuming 16bit audio
            lens.append(audio_len)
        return lens

    def collate_fn(self, batch):
        """
        Return Shapes:
            - tokens: :math:`[B, T]`
            - token_lens :math:`[B]`
            - token_rel_lens :math:`[B]`
            - waveform: :math:`[B, 1, T]`
            - waveform_lens: :math:`[B]`
            - waveform_rel_lens: :math:`[B]`
            - speaker_names: :math:`[B]`
            - language_names: :math:`[B]`
            - audiofile_paths: :math:`[B]`
            - raw_texts: :math:`[B]`
            - audio_unique_names: :math:`[B]`
        """
        # convert list of dicts to dict of lists
        B = len(batch)
        batch = {k: [dic[k] for dic in batch] for k in batch[0]}

        _, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([x.size(1) for x in batch["wav"]]), dim=0, descending=True
        )

        max_text_len = max([len(x) for x in batch["token_ids"]])
        token_lens = torch.LongTensor(batch["token_len"])
        token_rel_lens = token_lens / token_lens.max()

        wav_lens = [w.shape[1] for w in batch["wav"]]
        wav_lens = torch.LongTensor(wav_lens)
        wav_lens_max = torch.max(wav_lens)
        wav_rel_lens = wav_lens / wav_lens_max

        token_padded = torch.LongTensor(B, max_text_len)
        wav_padded = torch.FloatTensor(B, 1, wav_lens_max)
        token_padded = token_padded.zero_() + self.pad_id
        wav_padded = wav_padded.zero_() + self.pad_id
        for i in range(len(ids_sorted_decreasing)):
            token_ids = batch["token_ids"][i]
            token_padded[i, : batch["token_len"][i]] = torch.LongTensor(token_ids)

            wav = batch["wav"][i]
            wav_padded[i, :, : wav.size(1)] = torch.FloatTensor(wav)

        return {
            "tokens": token_padded,
            "token_lens": token_lens,
            "token_rel_lens": token_rel_lens,
            "waveform": wav_padded,  # (B x T)
            "waveform_lens": wav_lens,  # (B)
            "waveform_rel_lens": wav_rel_lens,
            "speaker_names": batch["speaker_name"],
            "language_names": batch["language_name"],
            "audio_files": batch["wav_file"],
            "raw_text": batch["raw_text"],
            "audio_unique_names": batch["audio_unique_name"],
        }


##############################
# MODEL DEFINITION
##############################


@dataclass
class VitsArgs(Coqpit):
    """VITS model arguments.

    Args:

        num_chars (int):
            Number of characters in the vocabulary. Defaults to 100.

        out_channels (int):
            Number of output channels of the decoder. Defaults to 513.

        spec_segment_size (int):
            Decoder input segment size. Defaults to 32 `(32 * hoplength = waveform length)`.

        hidden_channels (int):
            Number of hidden channels of the model. Defaults to 192.

        hidden_channels_ffn_text_encoder (int):
            Number of hidden channels of the feed-forward layers of the text encoder transformer. Defaults to 256.

        num_heads_text_encoder (int):
            Number of attention heads of the text encoder transformer. Defaults to 2.

        num_layers_text_encoder (int):
            Number of transformer layers in the text encoder. Defaults to 6.

        kernel_size_text_encoder (int):
            Kernel size of the text encoder transformer FFN layers. Defaults to 3.

        dropout_p_text_encoder (float):
            Dropout rate of the text encoder. Defaults to 0.1.

        dropout_p_duration_predictor (float):
            Dropout rate of the duration predictor. Defaults to 0.1.

        kernel_size_posterior_encoder (int):
            Kernel size of the posterior encoder's WaveNet layers. Defaults to 5.

        dilatation_posterior_encoder (int):
            Dilation rate of the posterior encoder's WaveNet layers. Defaults to 1.

        num_layers_posterior_encoder (int):
            Number of posterior encoder's WaveNet layers. Defaults to 16.

        kernel_size_flow (int):
            Kernel size of the Residual Coupling layers of the flow network. Defaults to 5.

        dilatation_flow (int):
            Dilation rate of the Residual Coupling WaveNet layers of the flow network. Defaults to 1.

        num_layers_flow (int):
            Number of Residual Coupling WaveNet layers of the flow network. Defaults to 6.

        resblock_type_decoder (str):
            Type of the residual block in the decoder network. Defaults to "1".

        resblock_kernel_sizes_decoder (List[int]):
            Kernel sizes of the residual blocks in the decoder network. Defaults to `[3, 7, 11]`.

        resblock_dilation_sizes_decoder (List[List[int]]):
            Dilation sizes of the residual blocks in the decoder network. Defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`.

        upsample_rates_decoder (List[int]):
            Upsampling rates for each concecutive upsampling layer in the decoder network. The multiply of these
            values must be equal to the kop length used for computing spectrograms. Defaults to `[8, 8, 2, 2]`.

        upsample_initial_channel_decoder (int):
            Number of hidden channels of the first upsampling convolution layer of the decoder network. Defaults to 512.

        upsample_kernel_sizes_decoder (List[int]):
            Kernel sizes for each upsampling layer of the decoder network. Defaults to `[16, 16, 4, 4]`.

        periods_multi_period_discriminator (List[int]):
            Periods values for Vits Multi-Period Discriminator. Defaults to `[2, 3, 5, 7, 11]`.

        use_sdp (bool):
            Use Stochastic Duration Predictor. Defaults to True.

        noise_scale (float):
            Noise scale used for the sample noise tensor in training. Defaults to 1.0.

        inference_noise_scale (float):
            Noise scale used for the sample noise tensor in inference. Defaults to 0.667.

        length_scale (float):
            Scale factor for the predicted duration values. Smaller values result faster speech. Defaults to 1.

        noise_scale_dp (float):
            Noise scale used by the Stochastic Duration Predictor sample noise in training. Defaults to 1.0.

        inference_noise_scale_dp (float):
            Noise scale for the Stochastic Duration Predictor in inference. Defaults to 0.8.

        max_inference_len (int):
            Maximum inference length to limit the memory use. Defaults to None.

        init_discriminator (bool):
            Initialize the disciminator network if set True. Set False for inference. Defaults to True.

        use_spectral_norm_disriminator (bool):
            Use spectral normalization over weight norm in the discriminator. Defaults to False.

        use_speaker_embedding (bool):
            Enable/Disable speaker embedding for multi-speaker models. Defaults to False.

        num_speakers (int):
            Number of speakers for the speaker embedding layer. Defaults to 0.

        speakers_file (str):
            Path to the speaker mapping file for the Speaker Manager. Defaults to None.

        speaker_embedding_channels (int):
            Number of speaker embedding channels. Defaults to 256.

        use_d_vector_file (bool):
            Enable/Disable the use of d-vectors for multi-speaker training. Defaults to False.

        d_vector_file (List[str]):
            List of paths to the files including pre-computed speaker embeddings. Defaults to None.

        d_vector_dim (int):
            Number of d-vector channels. Defaults to 0.

        detach_dp_input (bool):
            Detach duration predictor's input from the network for stopping the gradients. Defaults to True.

        use_language_embedding (bool):
            Enable/Disable language embedding for multilingual models. Defaults to False.

        embedded_language_dim (int):
            Number of language embedding channels. Defaults to 4.

        num_languages (int):
            Number of languages for the language embedding layer. Defaults to 0.

        language_ids_file (str):
            Path to the language mapping file for the Language Manager. Defaults to None.

        use_speaker_encoder_as_loss (bool):
            Enable/Disable Speaker Consistency Loss (SCL). Defaults to False.

        speaker_encoder_config_path (str):
            Path to the file speaker encoder config file, to use for SCL. Defaults to "".

        speaker_encoder_model_path (str):
            Path to the file speaker encoder checkpoint file, to use for SCL. Defaults to "".

        condition_dp_on_speaker (bool):
            Condition the duration predictor on the speaker embedding. Defaults to True.

        freeze_encoder (bool):
            Freeze the encoder weigths during training. Defaults to False.

        freeze_DP (bool):
            Freeze the duration predictor weigths during training. Defaults to False.

        freeze_PE (bool):
            Freeze the posterior encoder weigths during training. Defaults to False.

        freeze_flow_encoder (bool):
            Freeze the flow encoder weigths during training. Defaults to False.

        freeze_waveform_decoder (bool):
            Freeze the waveform decoder weigths during training. Defaults to False.

        encoder_sample_rate (int):
            If not None this sample rate will be used for training the Posterior Encoder,
            flow, text_encoder and duration predictor. The decoder part (vocoder) will be
            trained with the `config.audio.sample_rate`. Defaults to None.

        interpolate_z (bool):
            If `encoder_sample_rate` not None and  this parameter True the nearest interpolation
            will be used to upsampling the latent variable z with the sampling rate `encoder_sample_rate`
            to the `config.audio.sample_rate`. If it is False you will need to add extra
            `upsample_rates_decoder` to match the shape. Defaults to True.

    """

    num_chars: int = 100
    out_channels: int = 513
    spec_segment_size: int = 32
    hidden_channels: int = 192
    hidden_channels_ffn_text_encoder: int = 768
    num_heads_text_encoder: int = 2
    num_layers_text_encoder: int = 6
    kernel_size_text_encoder: int = 3
    dropout_p_text_encoder: float = 0.1
    dropout_p_duration_predictor: float = 0.5
    kernel_size_posterior_encoder: int = 5
    dilation_rate_posterior_encoder: int = 1
    num_layers_posterior_encoder: int = 16
    kernel_size_flow: int = 5
    dilation_rate_flow: int = 1
    num_layers_flow: int = 4
    resblock_type_decoder: str = "1"
    resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11])
    resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
    upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2])
    upsample_initial_channel_decoder: int = 512
    upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
    periods_multi_period_discriminator: List[int] = field(default_factory=lambda: [2, 3, 5, 7, 11])
    use_sdp: bool = True
    noise_scale: float = 1.0
    inference_noise_scale: float = 0.667
    length_scale: float = 1
    noise_scale_dp: float = 1.0
    inference_noise_scale_dp: float = 1.0
    max_inference_len: int = None
    init_discriminator: bool = True
    use_spectral_norm_disriminator: bool = False
    use_speaker_embedding: bool = False
    num_speakers: int = 0
    speakers_file: str = None
    d_vector_file: List[str] = None
    speaker_embedding_channels: int = 256
    use_d_vector_file: bool = False
    d_vector_dim: int = 0
    detach_dp_input: bool = True
    use_language_embedding: bool = False
    embedded_language_dim: int = 4
    num_languages: int = 0
    language_ids_file: str = None
    use_speaker_encoder_as_loss: bool = False
    speaker_encoder_config_path: str = ""
    speaker_encoder_model_path: str = ""
    condition_dp_on_speaker: bool = True
    freeze_encoder: bool = False
    freeze_DP: bool = False
    freeze_PE: bool = False
    freeze_flow_decoder: bool = False
    freeze_waveform_decoder: bool = False
    encoder_sample_rate: int = None
    interpolate_z: bool = True
    reinit_DP: bool = False
    reinit_text_encoder: bool = False


class Vits(BaseTTS):
    """VITS TTS model

    Paper::
        https://arxiv.org/pdf/2106.06103.pdf

    Paper Abstract::
        Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel
        sampling have been proposed, but their sample quality does not match that of two-stage TTS systems.
        In this work, we present a parallel endto-end TTS method that generates more natural sounding audio than
        current two-stage models. Our method adopts variational inference augmented with normalizing flows and
        an adversarial training process, which improves the expressive power of generative modeling. We also propose a
        stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the
        uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the
        natural one-to-many relationship in which a text input can be spoken in multiple ways
        with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS)
        on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly
        available TTS systems and achieves a MOS comparable to ground truth.

    Check :class:`TTS.tts.configs.vits_config.VitsConfig` for class arguments.

    Examples:
        >>> from TTS.tts.configs.vits_config import VitsConfig
        >>> from TTS.tts.models.vits import Vits
        >>> config = VitsConfig()
        >>> model = Vits(config)
    """

    def __init__(
        self,
        config: Coqpit,
        ap: "AudioProcessor" = None,
        tokenizer: "TTSTokenizer" = None,
        speaker_manager: SpeakerManager = None,
        language_manager: LanguageManager = None,
    ):
        super().__init__(config, ap, tokenizer, speaker_manager, language_manager)

        self.init_multispeaker(config)
        self.init_multilingual(config)
        self.init_upsampling()

        self.length_scale = self.args.length_scale
        self.noise_scale = self.args.noise_scale
        self.inference_noise_scale = self.args.inference_noise_scale
        self.inference_noise_scale_dp = self.args.inference_noise_scale_dp
        self.noise_scale_dp = self.args.noise_scale_dp
        self.max_inference_len = self.args.max_inference_len
        self.spec_segment_size = self.args.spec_segment_size

        self.text_encoder = TextEncoder(
            self.args.num_chars,
            self.args.hidden_channels,
            self.args.hidden_channels,
            self.args.hidden_channels_ffn_text_encoder,
            self.args.num_heads_text_encoder,
            self.args.num_layers_text_encoder,
            self.args.kernel_size_text_encoder,
            self.args.dropout_p_text_encoder,
            language_emb_dim=self.embedded_language_dim,
        )

        self.posterior_encoder = PosteriorEncoder(
            self.args.out_channels,
            self.args.hidden_channels,
            self.args.hidden_channels,
            kernel_size=self.args.kernel_size_posterior_encoder,
            dilation_rate=self.args.dilation_rate_posterior_encoder,
            num_layers=self.args.num_layers_posterior_encoder,
            cond_channels=self.embedded_speaker_dim,
        )

        self.flow = ResidualCouplingBlocks(
            self.args.hidden_channels,
            self.args.hidden_channels,
            kernel_size=self.args.kernel_size_flow,
            dilation_rate=self.args.dilation_rate_flow,
            num_layers=self.args.num_layers_flow,
            cond_channels=self.embedded_speaker_dim,
        )

        if self.args.use_sdp:
            self.duration_predictor = StochasticDurationPredictor(
                self.args.hidden_channels,
                192,
                3,
                self.args.dropout_p_duration_predictor,
                4,
                cond_channels=self.embedded_speaker_dim if self.args.condition_dp_on_speaker else 0,
                language_emb_dim=self.embedded_language_dim,
            )
        else:
            self.duration_predictor = DurationPredictor(
                self.args.hidden_channels,
                256,
                3,
                self.args.dropout_p_duration_predictor,
                cond_channels=self.embedded_speaker_dim,
                language_emb_dim=self.embedded_language_dim,
            )

        self.waveform_decoder = HifiganGenerator(
            self.args.hidden_channels,
            1,
            self.args.resblock_type_decoder,
            self.args.resblock_dilation_sizes_decoder,
            self.args.resblock_kernel_sizes_decoder,
            self.args.upsample_kernel_sizes_decoder,
            self.args.upsample_initial_channel_decoder,
            self.args.upsample_rates_decoder,
            inference_padding=0,
            cond_channels=self.embedded_speaker_dim,
            conv_pre_weight_norm=False,
            conv_post_weight_norm=False,
            conv_post_bias=False,
        )

        if self.args.init_discriminator:
            self.disc = VitsDiscriminator(
                periods=self.args.periods_multi_period_discriminator,
                use_spectral_norm=self.args.use_spectral_norm_disriminator,
            )

    @property
    def device(self):
        return next(self.parameters()).device

    def init_multispeaker(self, config: Coqpit):
        """Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer
        or with external `d_vectors` computed from a speaker encoder model.

        You must provide a `speaker_manager` at initialization to set up the multi-speaker modules.

        Args:
            config (Coqpit): Model configuration.
            data (List, optional): Dataset items to infer number of speakers. Defaults to None.
        """
        self.embedded_speaker_dim = 0
        self.num_speakers = self.args.num_speakers
        self.audio_transform = None

        if self.speaker_manager:
            self.num_speakers = self.speaker_manager.num_speakers

        if self.args.use_speaker_embedding:
            self._init_speaker_embedding()

        if self.args.use_d_vector_file:
            self._init_d_vector()

        # TODO: make this a function
        if self.args.use_speaker_encoder_as_loss:
            if self.speaker_manager.encoder is None and (
                not self.args.speaker_encoder_model_path or not self.args.speaker_encoder_config_path
            ):
                raise RuntimeError(
                    " [!] To use the speaker consistency loss (SCL) you need to specify speaker_encoder_model_path and speaker_encoder_config_path !!"
                )

            self.speaker_manager.encoder.eval()
            print(" > External Speaker Encoder Loaded !!")

            if (
                hasattr(self.speaker_manager.encoder, "audio_config")
                and self.config.audio.sample_rate != self.speaker_manager.encoder.audio_config["sample_rate"]
            ):
                self.audio_transform = torchaudio.transforms.Resample(
                    orig_freq=self.config.audio.sample_rate,
                    new_freq=self.speaker_manager.encoder.audio_config["sample_rate"],
                )

    def _init_speaker_embedding(self):
        # pylint: disable=attribute-defined-outside-init
        if self.num_speakers > 0:
            print(" > initialization of speaker-embedding layers.")
            self.embedded_speaker_dim = self.args.speaker_embedding_channels
            self.emb_g = nn.Embedding(self.num_speakers, self.embedded_speaker_dim)

    def _init_d_vector(self):
        # pylint: disable=attribute-defined-outside-init
        if hasattr(self, "emb_g"):
            raise ValueError("[!] Speaker embedding layer already initialized before d_vector settings.")
        self.embedded_speaker_dim = self.args.d_vector_dim

    def init_multilingual(self, config: Coqpit):
        """Initialize multilingual modules of a model.

        Args:
            config (Coqpit): Model configuration.
        """
        if self.args.language_ids_file is not None:
            self.language_manager = LanguageManager(language_ids_file_path=config.language_ids_file)

        if self.args.use_language_embedding and self.language_manager:
            print(" > initialization of language-embedding layers.")
            self.num_languages = self.language_manager.num_languages
            self.embedded_language_dim = self.args.embedded_language_dim
            self.emb_l = nn.Embedding(self.num_languages, self.embedded_language_dim)
            torch.nn.init.xavier_uniform_(self.emb_l.weight)
        else:
            self.embedded_language_dim = 0

    def init_upsampling(self):
        """
        Initialize upsampling modules of a model.
        """
        if self.args.encoder_sample_rate:
            self.interpolate_factor = self.config.audio["sample_rate"] / self.args.encoder_sample_rate
            self.audio_resampler = torchaudio.transforms.Resample(
                orig_freq=self.config.audio["sample_rate"], new_freq=self.args.encoder_sample_rate
            )  # pylint: disable=W0201

    def on_epoch_start(self, trainer):  # pylint: disable=W0613
        """Freeze layers at the beginning of an epoch"""
        self._freeze_layers()
        # set the device of speaker encoder
        if self.args.use_speaker_encoder_as_loss:
            self.speaker_manager.encoder = self.speaker_manager.encoder.to(self.device)

    def on_init_end(self, trainer):  # pylint: disable=W0613
        """Reinit layes if needed"""
        if self.args.reinit_DP:
            before_dict = get_module_weights_sum(self.duration_predictor)
            # Applies weights_reset recursively to every submodule of the duration predictor
            self.duration_predictor.apply(fn=weights_reset)
            after_dict = get_module_weights_sum(self.duration_predictor)
            for key, value in after_dict.items():
                if value == before_dict[key]:
                    raise RuntimeError(" [!] The weights of Duration Predictor was not reinit check it !")
            print(" > Duration Predictor was reinit.")

        if self.args.reinit_text_encoder:
            before_dict = get_module_weights_sum(self.text_encoder)
            # Applies weights_reset recursively to every submodule of the duration predictor
            self.text_encoder.apply(fn=weights_reset)
            after_dict = get_module_weights_sum(self.text_encoder)
            for key, value in after_dict.items():
                if value == before_dict[key]:
                    raise RuntimeError(" [!] The weights of Text Encoder was not reinit check it !")
            print(" > Text Encoder was reinit.")

    def get_aux_input(self, aux_input: Dict):
        sid, g, lid, _ = self._set_cond_input(aux_input)
        return {"speaker_ids": sid, "style_wav": None, "d_vectors": g, "language_ids": lid}

    def _freeze_layers(self):
        if self.args.freeze_encoder:
            for param in self.text_encoder.parameters():
                param.requires_grad = False

            if hasattr(self, "emb_l"):
                for param in self.emb_l.parameters():
                    param.requires_grad = False

        if self.args.freeze_PE:
            for param in self.posterior_encoder.parameters():
                param.requires_grad = False

        if self.args.freeze_DP:
            for param in self.duration_predictor.parameters():
                param.requires_grad = False

        if self.args.freeze_flow_decoder:
            for param in self.flow.parameters():
                param.requires_grad = False

        if self.args.freeze_waveform_decoder:
            for param in self.waveform_decoder.parameters():
                param.requires_grad = False

    @staticmethod
    def _set_cond_input(aux_input: Dict):
        """Set the speaker conditioning input based on the multi-speaker mode."""
        sid, g, lid, durations = None, None, None, None
        if "speaker_ids" in aux_input and aux_input["speaker_ids"] is not None:
            sid = aux_input["speaker_ids"]
            if sid.ndim == 0:
                sid = sid.unsqueeze_(0)
        if "d_vectors" in aux_input and aux_input["d_vectors"] is not None:
            g = F.normalize(aux_input["d_vectors"]).unsqueeze(-1)
            if g.ndim == 2:
                g = g.unsqueeze_(0)

        if "language_ids" in aux_input and aux_input["language_ids"] is not None:
            lid = aux_input["language_ids"]
            if lid.ndim == 0:
                lid = lid.unsqueeze_(0)

        if "durations" in aux_input and aux_input["durations"] is not None:
            durations = aux_input["durations"]

        return sid, g, lid, durations

    def _set_speaker_input(self, aux_input: Dict):
        d_vectors = aux_input.get("d_vectors", None)
        speaker_ids = aux_input.get("speaker_ids", None)

        if d_vectors is not None and speaker_ids is not None:
            raise ValueError("[!] Cannot use d-vectors and speaker-ids together.")

        if speaker_ids is not None and not hasattr(self, "emb_g"):
            raise ValueError("[!] Cannot use speaker-ids without enabling speaker embedding.")

        g = speaker_ids if speaker_ids is not None else d_vectors
        return g

    def forward_mas(self, outputs, z_p, m_p, logs_p, x, x_mask, y_mask, g, lang_emb):
        # find the alignment path
        attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
        with torch.no_grad():
            o_scale = torch.exp(-2 * logs_p)
            logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1]).unsqueeze(-1)  # [b, t, 1]
            logp2 = torch.einsum("klm, kln -> kmn", [o_scale, -0.5 * (z_p**2)])
            logp3 = torch.einsum("klm, kln -> kmn", [m_p * o_scale, z_p])
            logp4 = torch.sum(-0.5 * (m_p**2) * o_scale, [1]).unsqueeze(-1)  # [b, t, 1]
            logp = logp2 + logp3 + logp1 + logp4
            attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach()  # [b, 1, t, t']

        # duration predictor
        attn_durations = attn.sum(3)
        if self.args.use_sdp:
            loss_duration = self.duration_predictor(
                x.detach() if self.args.detach_dp_input else x,
                x_mask,
                attn_durations,
                g=g.detach() if self.args.detach_dp_input and g is not None else g,
                lang_emb=lang_emb.detach() if self.args.detach_dp_input and lang_emb is not None else lang_emb,
            )
            loss_duration = loss_duration / torch.sum(x_mask)
        else:
            attn_log_durations = torch.log(attn_durations + 1e-6) * x_mask
            log_durations = self.duration_predictor(
                x.detach() if self.args.detach_dp_input else x,
                x_mask,
                g=g.detach() if self.args.detach_dp_input and g is not None else g,
                lang_emb=lang_emb.detach() if self.args.detach_dp_input and lang_emb is not None else lang_emb,
            )
            loss_duration = torch.sum((log_durations - attn_log_durations) ** 2, [1, 2]) / torch.sum(x_mask)
        outputs["loss_duration"] = loss_duration
        return outputs, attn

    def upsampling_z(self, z, slice_ids=None, y_lengths=None, y_mask=None):
        spec_segment_size = self.spec_segment_size
        if self.args.encoder_sample_rate:
            # recompute the slices and spec_segment_size if needed
            slice_ids = slice_ids * int(self.interpolate_factor) if slice_ids is not None else slice_ids
            spec_segment_size = spec_segment_size * int(self.interpolate_factor)
            # interpolate z if needed
            if self.args.interpolate_z:
                z = torch.nn.functional.interpolate(z, scale_factor=[self.interpolate_factor], mode="linear").squeeze(0)
                # recompute the mask if needed
                if y_lengths is not None and y_mask is not None:
                    y_mask = (
                        sequence_mask(y_lengths * self.interpolate_factor, None).to(y_mask.dtype).unsqueeze(1)
                    )  # [B, 1, T_dec_resampled]

        return z, spec_segment_size, slice_ids, y_mask

    def forward(  # pylint: disable=dangerous-default-value
        self,
        x: torch.tensor,
        x_lengths: torch.tensor,
        y: torch.tensor,
        y_lengths: torch.tensor,
        waveform: torch.tensor,
        aux_input={"d_vectors": None, "speaker_ids": None, "language_ids": None},
    ) -> Dict:
        """Forward pass of the model.

        Args:
            x (torch.tensor): Batch of input character sequence IDs.
            x_lengths (torch.tensor): Batch of input character sequence lengths.
            y (torch.tensor): Batch of input spectrograms.
            y_lengths (torch.tensor): Batch of input spectrogram lengths.
            waveform (torch.tensor): Batch of ground truth waveforms per sample.
            aux_input (dict, optional): Auxiliary inputs for multi-speaker and multi-lingual training.
                Defaults to {"d_vectors": None, "speaker_ids": None, "language_ids": None}.

        Returns:
            Dict: model outputs keyed by the output name.

        Shapes:
            - x: :math:`[B, T_seq]`
            - x_lengths: :math:`[B]`
            - y: :math:`[B, C, T_spec]`
            - y_lengths: :math:`[B]`
            - waveform: :math:`[B, 1, T_wav]`
            - d_vectors: :math:`[B, C, 1]`
            - speaker_ids: :math:`[B]`
            - language_ids: :math:`[B]`

        Return Shapes:
            - model_outputs: :math:`[B, 1, T_wav]`
            - alignments: :math:`[B, T_seq, T_dec]`
            - z: :math:`[B, C, T_dec]`
            - z_p: :math:`[B, C, T_dec]`
            - m_p: :math:`[B, C, T_dec]`
            - logs_p: :math:`[B, C, T_dec]`
            - m_q: :math:`[B, C, T_dec]`
            - logs_q: :math:`[B, C, T_dec]`
            - waveform_seg: :math:`[B, 1, spec_seg_size * hop_length]`
            - gt_spk_emb: :math:`[B, 1, speaker_encoder.proj_dim]`
            - syn_spk_emb: :math:`[B, 1, speaker_encoder.proj_dim]`
        """
        outputs = {}
        sid, g, lid, _ = self._set_cond_input(aux_input)
        # speaker embedding
        if self.args.use_speaker_embedding and sid is not None:
            g = self.emb_g(sid).unsqueeze(-1)  # [b, h, 1]

        # language embedding
        lang_emb = None
        if self.args.use_language_embedding and lid is not None:
            lang_emb = self.emb_l(lid).unsqueeze(-1)

        x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)

        # posterior encoder
        z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g)

        # flow layers
        z_p = self.flow(z, y_mask, g=g)

        # duration predictor
        outputs, attn = self.forward_mas(outputs, z_p, m_p, logs_p, x, x_mask, y_mask, g=g, lang_emb=lang_emb)

        # expand prior
        m_p = torch.einsum("klmn, kjm -> kjn", [attn, m_p])
        logs_p = torch.einsum("klmn, kjm -> kjn", [attn, logs_p])

        # select a random feature segment for the waveform decoder
        z_slice, slice_ids = rand_segments(z, y_lengths, self.spec_segment_size, let_short_samples=True, pad_short=True)

        # interpolate z if needed
        z_slice, spec_segment_size, slice_ids, _ = self.upsampling_z(z_slice, slice_ids=slice_ids)

        o = self.waveform_decoder(z_slice, g=g)

        wav_seg = segment(
            waveform,
            slice_ids * self.config.audio.hop_length,
            spec_segment_size * self.config.audio.hop_length,
            pad_short=True,
        )

        if self.args.use_speaker_encoder_as_loss and self.speaker_manager.encoder is not None:
            # concate generated and GT waveforms
            wavs_batch = torch.cat((wav_seg, o), dim=0)

            # resample audio to speaker encoder sample_rate
            # pylint: disable=W0105
            if self.audio_transform is not None:
                wavs_batch = self.audio_transform(wavs_batch)

            pred_embs = self.speaker_manager.encoder.forward(wavs_batch, l2_norm=True)

            # split generated and GT speaker embeddings
            gt_spk_emb, syn_spk_emb = torch.chunk(pred_embs, 2, dim=0)
        else:
            gt_spk_emb, syn_spk_emb = None, None

        outputs.update(
            {
                "model_outputs": o,
                "alignments": attn.squeeze(1),
                "m_p": m_p,
                "logs_p": logs_p,
                "z": z,
                "z_p": z_p,
                "m_q": m_q,
                "logs_q": logs_q,
                "waveform_seg": wav_seg,
                "gt_spk_emb": gt_spk_emb,
                "syn_spk_emb": syn_spk_emb,
                "slice_ids": slice_ids,
            }
        )
        return outputs

    @staticmethod
    def _set_x_lengths(x, aux_input):
        if "x_lengths" in aux_input and aux_input["x_lengths"] is not None:
            return aux_input["x_lengths"]
        return torch.tensor(x.shape[1:2]).to(x.device)

    @torch.no_grad()
    def inference(
        self,
        x,
        aux_input={"x_lengths": None, "d_vectors": None, "speaker_ids": None, "language_ids": None, "durations": None},
    ):  # pylint: disable=dangerous-default-value
        """
        Note:
            To run in batch mode, provide `x_lengths` else model assumes that the batch size is 1.

        Shapes:
            - x: :math:`[B, T_seq]`
            - x_lengths: :math:`[B]`
            - d_vectors: :math:`[B, C]`
            - speaker_ids: :math:`[B]`

        Return Shapes:
            - model_outputs: :math:`[B, 1, T_wav]`
            - alignments: :math:`[B, T_seq, T_dec]`
            - z: :math:`[B, C, T_dec]`
            - z_p: :math:`[B, C, T_dec]`
            - m_p: :math:`[B, C, T_dec]`
            - logs_p: :math:`[B, C, T_dec]`
        """
        sid, g, lid, durations = self._set_cond_input(aux_input)
        x_lengths = self._set_x_lengths(x, aux_input)

        # speaker embedding
        if self.args.use_speaker_embedding and sid is not None:
            g = self.emb_g(sid).unsqueeze(-1)

        # language embedding
        lang_emb = None
        if self.args.use_language_embedding and lid is not None:
            lang_emb = self.emb_l(lid).unsqueeze(-1)

        x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)

        if durations is None:
            if self.args.use_sdp:
                logw = self.duration_predictor(
                    x,
                    x_mask,
                    g=g if self.args.condition_dp_on_speaker else None,
                    reverse=True,
                    noise_scale=self.inference_noise_scale_dp,
                    lang_emb=lang_emb,
                )
            else:
                logw = self.duration_predictor(
                    x, x_mask, g=g if self.args.condition_dp_on_speaker else None, lang_emb=lang_emb
                )
            w = torch.exp(logw) * x_mask * self.length_scale
        else:
            assert durations.shape[-1] == x.shape[-1]
            w = durations.unsqueeze(0)

        w_ceil = torch.ceil(w)
        y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
        y_mask = sequence_mask(y_lengths, None).to(x_mask.dtype).unsqueeze(1)  # [B, 1, T_dec]

        attn_mask = x_mask * y_mask.transpose(1, 2)  # [B, 1, T_enc] * [B, T_dec, 1]
        attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1).transpose(1, 2))

        m_p = torch.matmul(attn.transpose(1, 2), m_p.transpose(1, 2)).transpose(1, 2)
        logs_p = torch.matmul(attn.transpose(1, 2), logs_p.transpose(1, 2)).transpose(1, 2)

        z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * self.inference_noise_scale
        z = self.flow(z_p, y_mask, g=g, reverse=True)

        # upsampling if needed
        z, _, _, y_mask = self.upsampling_z(z, y_lengths=y_lengths, y_mask=y_mask)

        o = self.waveform_decoder((z * y_mask)[:, :, : self.max_inference_len], g=g)

        outputs = {
            "model_outputs": o,
            "alignments": attn.squeeze(1),
            "durations": w_ceil,
            "z": z,
            "z_p": z_p,
            "m_p": m_p,
            "logs_p": logs_p,
            "y_mask": y_mask,
        }
        return outputs

    @torch.no_grad()
    def inference_voice_conversion(
        self, reference_wav, speaker_id=None, d_vector=None, reference_speaker_id=None, reference_d_vector=None
    ):
        """Inference for voice conversion

        Args:
            reference_wav (Tensor): Reference wavform. Tensor of shape [B, T]
            speaker_id (Tensor): speaker_id of the target speaker. Tensor of shape [B]
            d_vector (Tensor): d_vector embedding of target speaker. Tensor of shape `[B, C]`
            reference_speaker_id (Tensor): speaker_id of the reference_wav speaker. Tensor of shape [B]
            reference_d_vector (Tensor): d_vector embedding of the reference_wav speaker. Tensor of shape `[B, C]`
        """
        # compute spectrograms
        y = wav_to_spec(
            reference_wav,
            self.config.audio.fft_size,
            self.config.audio.hop_length,
            self.config.audio.win_length,
            center=False,
        )
        y_lengths = torch.tensor([y.size(-1)]).to(y.device)
        speaker_cond_src = reference_speaker_id if reference_speaker_id is not None else reference_d_vector
        speaker_cond_tgt = speaker_id if speaker_id is not None else d_vector
        wav, _, _ = self.voice_conversion(y, y_lengths, speaker_cond_src, speaker_cond_tgt)
        return wav

    def voice_conversion(self, y, y_lengths, speaker_cond_src, speaker_cond_tgt):
        """Forward pass for voice conversion

        TODO: create an end-point for voice conversion

        Args:
            y (Tensor): Reference spectrograms. Tensor of shape [B, T, C]
            y_lengths (Tensor): Length of each reference spectrogram. Tensor of shape [B]
            speaker_cond_src (Tensor): Reference speaker ID. Tensor of shape [B,]
            speaker_cond_tgt (Tensor): Target speaker ID. Tensor of shape [B,]
        """
        assert self.num_speakers > 0, "num_speakers have to be larger than 0."
        # speaker embedding
        if self.args.use_speaker_embedding and not self.args.use_d_vector_file:
            g_src = self.emb_g(torch.from_numpy((np.array(speaker_cond_src))).unsqueeze(0)).unsqueeze(-1)
            g_tgt = self.emb_g(torch.from_numpy((np.array(speaker_cond_tgt))).unsqueeze(0)).unsqueeze(-1)
        elif not self.args.use_speaker_embedding and self.args.use_d_vector_file:
            g_src = F.normalize(speaker_cond_src).unsqueeze(-1)
            g_tgt = F.normalize(speaker_cond_tgt).unsqueeze(-1)
        else:
            raise RuntimeError(" [!] Voice conversion is only supported on multi-speaker models.")

        z, _, _, y_mask = self.posterior_encoder(y, y_lengths, g=g_src)
        z_p = self.flow(z, y_mask, g=g_src)
        z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
        o_hat = self.waveform_decoder(z_hat * y_mask, g=g_tgt)
        return o_hat, y_mask, (z, z_p, z_hat)

    def train_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int) -> Tuple[Dict, Dict]:
        """Perform a single training step. Run the model forward pass and compute losses.

        Args:
            batch (Dict): Input tensors.
            criterion (nn.Module): Loss layer designed for the model.
            optimizer_idx (int): Index of optimizer to use. 0 for the generator and 1 for the discriminator networks.

        Returns:
            Tuple[Dict, Dict]: Model ouputs and computed losses.
        """

        spec_lens = batch["spec_lens"]

        if optimizer_idx == 0:
            tokens = batch["tokens"]
            token_lenghts = batch["token_lens"]
            spec = batch["spec"]

            d_vectors = batch["d_vectors"]
            speaker_ids = batch["speaker_ids"]
            language_ids = batch["language_ids"]
            waveform = batch["waveform"]

            # generator pass
            outputs = self.forward(
                tokens,
                token_lenghts,
                spec,
                spec_lens,
                waveform,
                aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids},
            )

            # cache tensors for the generator pass
            self.model_outputs_cache = outputs  # pylint: disable=attribute-defined-outside-init

            # compute scores and features
            scores_disc_fake, _, scores_disc_real, _ = self.disc(
                outputs["model_outputs"].detach(), outputs["waveform_seg"]
            )

            # compute loss
            with autocast(enabled=False):  # use float32 for the criterion
                loss_dict = criterion[optimizer_idx](
                    scores_disc_real,
                    scores_disc_fake,
                )
            return outputs, loss_dict

        if optimizer_idx == 1:
            mel = batch["mel"]

            # compute melspec segment
            with autocast(enabled=False):
                if self.args.encoder_sample_rate:
                    spec_segment_size = self.spec_segment_size * int(self.interpolate_factor)
                else:
                    spec_segment_size = self.spec_segment_size

                mel_slice = segment(
                    mel.float(), self.model_outputs_cache["slice_ids"], spec_segment_size, pad_short=True
                )
                mel_slice_hat = wav_to_mel(
                    y=self.model_outputs_cache["model_outputs"].float(),
                    n_fft=self.config.audio.fft_size,
                    sample_rate=self.config.audio.sample_rate,
                    num_mels=self.config.audio.num_mels,
                    hop_length=self.config.audio.hop_length,
                    win_length=self.config.audio.win_length,
                    fmin=self.config.audio.mel_fmin,
                    fmax=self.config.audio.mel_fmax,
                    center=False,
                )

            # compute discriminator scores and features
            scores_disc_fake, feats_disc_fake, _, feats_disc_real = self.disc(
                self.model_outputs_cache["model_outputs"], self.model_outputs_cache["waveform_seg"]
            )

            # compute losses
            with autocast(enabled=False):  # use float32 for the criterion
                loss_dict = criterion[optimizer_idx](
                    mel_slice_hat=mel_slice.float(),
                    mel_slice=mel_slice_hat.float(),
                    z_p=self.model_outputs_cache["z_p"].float(),
                    logs_q=self.model_outputs_cache["logs_q"].float(),
                    m_p=self.model_outputs_cache["m_p"].float(),
                    logs_p=self.model_outputs_cache["logs_p"].float(),
                    z_len=spec_lens,
                    scores_disc_fake=scores_disc_fake,
                    feats_disc_fake=feats_disc_fake,
                    feats_disc_real=feats_disc_real,
                    loss_duration=self.model_outputs_cache["loss_duration"],
                    use_speaker_encoder_as_loss=self.args.use_speaker_encoder_as_loss,
                    gt_spk_emb=self.model_outputs_cache["gt_spk_emb"],
                    syn_spk_emb=self.model_outputs_cache["syn_spk_emb"],
                )

            return self.model_outputs_cache, loss_dict

        raise ValueError(" [!] Unexpected `optimizer_idx`.")

    def _log(self, ap, batch, outputs, name_prefix="train"):  # pylint: disable=unused-argument,no-self-use
        y_hat = outputs[1]["model_outputs"]
        y = outputs[1]["waveform_seg"]
        figures = plot_results(y_hat, y, ap, name_prefix)
        sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
        audios = {f"{name_prefix}/audio": sample_voice}

        alignments = outputs[1]["alignments"]
        align_img = alignments[0].data.cpu().numpy().T

        figures.update(
            {
                "alignment": plot_alignment(align_img, output_fig=False),
            }
        )
        return figures, audios

    def train_log(
        self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int
    ):  # pylint: disable=no-self-use
        """Create visualizations and waveform examples.

        For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to
        be projected onto Tensorboard.

        Args:
            ap (AudioProcessor): audio processor used at training.
            batch (Dict): Model inputs used at the previous training step.
            outputs (Dict): Model outputs generated at the previoud training step.

        Returns:
            Tuple[Dict, np.ndarray]: training plots and output waveform.
        """
        figures, audios = self._log(self.ap, batch, outputs, "train")
        logger.train_figures(steps, figures)
        logger.train_audios(steps, audios, self.ap.sample_rate)

    @torch.no_grad()
    def eval_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int):
        return self.train_step(batch, criterion, optimizer_idx)

    def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:
        figures, audios = self._log(self.ap, batch, outputs, "eval")
        logger.eval_figures(steps, figures)
        logger.eval_audios(steps, audios, self.ap.sample_rate)

    def get_aux_input_from_test_sentences(self, sentence_info):
        if hasattr(self.config, "model_args"):
            config = self.config.model_args
        else:
            config = self.config

        # extract speaker and language info
        text, speaker_name, style_wav, language_name = None, None, None, None

        if isinstance(sentence_info, list):
            if len(sentence_info) == 1:
                text = sentence_info[0]
            elif len(sentence_info) == 2:
                text, speaker_name = sentence_info
            elif len(sentence_info) == 3:
                text, speaker_name, style_wav = sentence_info
            elif len(sentence_info) == 4:
                text, speaker_name, style_wav, language_name = sentence_info
        else:
            text = sentence_info

        # get speaker  id/d_vector
        speaker_id, d_vector, language_id = None, None, None
        if hasattr(self, "speaker_manager"):
            if config.use_d_vector_file:
                if speaker_name is None:
                    d_vector = self.speaker_manager.get_random_embedding()
                else:
                    d_vector = self.speaker_manager.get_mean_embedding(speaker_name, num_samples=None, randomize=False)
            elif config.use_speaker_embedding:
                if speaker_name is None:
                    speaker_id = self.speaker_manager.get_random_id()
                else:
                    speaker_id = self.speaker_manager.name_to_id[speaker_name]

        # get language id
        if hasattr(self, "language_manager") and config.use_language_embedding and language_name is not None:
            language_id = self.language_manager.name_to_id[language_name]

        return {
            "text": text,
            "speaker_id": speaker_id,
            "style_wav": style_wav,
            "d_vector": d_vector,
            "language_id": language_id,
            "language_name": language_name,
        }

    @torch.no_grad()
    def test_run(self, assets) -> Tuple[Dict, Dict]:
        """Generic test run for `tts` models used by `Trainer`.

        You can override this for a different behaviour.

        Returns:
            Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard.
        """
        print(" | > Synthesizing test sentences.")
        test_audios = {}
        test_figures = {}
        test_sentences = self.config.test_sentences
        for idx, s_info in enumerate(test_sentences):
            aux_inputs = self.get_aux_input_from_test_sentences(s_info)
            wav, alignment, _, _ = synthesis(
                self,
                aux_inputs["text"],
                self.config,
                "cuda" in str(next(self.parameters()).device),
                speaker_id=aux_inputs["speaker_id"],
                d_vector=aux_inputs["d_vector"],
                style_wav=aux_inputs["style_wav"],
                language_id=aux_inputs["language_id"],
                use_griffin_lim=True,
                do_trim_silence=False,
            ).values()
            test_audios["{}-audio".format(idx)] = wav
            test_figures["{}-alignment".format(idx)] = plot_alignment(alignment.T, output_fig=False)
        return {"figures": test_figures, "audios": test_audios}

    def test_log(
        self, outputs: dict, logger: "Logger", assets: dict, steps: int  # pylint: disable=unused-argument
    ) -> None:
        logger.test_audios(steps, outputs["audios"], self.ap.sample_rate)
        logger.test_figures(steps, outputs["figures"])

    def format_batch(self, batch: Dict) -> Dict:
        """Compute speaker, langugage IDs and d_vector for the batch if necessary."""
        speaker_ids = None
        language_ids = None
        d_vectors = None

        # get numerical speaker ids from speaker names
        if self.speaker_manager is not None and self.speaker_manager.name_to_id and self.args.use_speaker_embedding:
            speaker_ids = [self.speaker_manager.name_to_id[sn] for sn in batch["speaker_names"]]

        if speaker_ids is not None:
            speaker_ids = torch.LongTensor(speaker_ids)

        # get d_vectors from audio file names
        if self.speaker_manager is not None and self.speaker_manager.embeddings and self.args.use_d_vector_file:
            d_vector_mapping = self.speaker_manager.embeddings
            d_vectors = [d_vector_mapping[w]["embedding"] for w in batch["audio_unique_names"]]
            d_vectors = torch.FloatTensor(d_vectors)

        # get language ids from language names
        if self.language_manager is not None and self.language_manager.name_to_id and self.args.use_language_embedding:
            language_ids = [self.language_manager.name_to_id[ln] for ln in batch["language_names"]]

        if language_ids is not None:
            language_ids = torch.LongTensor(language_ids)

        batch["language_ids"] = language_ids
        batch["d_vectors"] = d_vectors
        batch["speaker_ids"] = speaker_ids
        return batch

    def format_batch_on_device(self, batch):
        """Compute spectrograms on the device."""
        ac = self.config.audio

        if self.args.encoder_sample_rate:
            wav = self.audio_resampler(batch["waveform"])
        else:
            wav = batch["waveform"]

        # compute spectrograms
        batch["spec"] = wav_to_spec(wav, ac.fft_size, ac.hop_length, ac.win_length, center=False)

        if self.args.encoder_sample_rate:
            # recompute spec with high sampling rate to the loss
            spec_mel = wav_to_spec(batch["waveform"], ac.fft_size, ac.hop_length, ac.win_length, center=False)
            # remove extra stft frames if needed
            if spec_mel.size(2) > int(batch["spec"].size(2) * self.interpolate_factor):
                spec_mel = spec_mel[:, :, : int(batch["spec"].size(2) * self.interpolate_factor)]
            else:
                batch["spec"] = batch["spec"][:, :, : int(spec_mel.size(2) / self.interpolate_factor)]
        else:
            spec_mel = batch["spec"]

        batch["mel"] = spec_to_mel(
            spec=spec_mel,
            n_fft=ac.fft_size,
            num_mels=ac.num_mels,
            sample_rate=ac.sample_rate,
            fmin=ac.mel_fmin,
            fmax=ac.mel_fmax,
        )

        if self.args.encoder_sample_rate:
            assert batch["spec"].shape[2] == int(
                batch["mel"].shape[2] / self.interpolate_factor
            ), f"{batch['spec'].shape[2]}, {batch['mel'].shape[2]}"
        else:
            assert batch["spec"].shape[2] == batch["mel"].shape[2], f"{batch['spec'].shape[2]}, {batch['mel'].shape[2]}"

        # compute spectrogram frame lengths
        batch["spec_lens"] = (batch["spec"].shape[2] * batch["waveform_rel_lens"]).int()
        batch["mel_lens"] = (batch["mel"].shape[2] * batch["waveform_rel_lens"]).int()

        if self.args.encoder_sample_rate:
            assert (batch["spec_lens"] - (batch["mel_lens"] / self.interpolate_factor).int()).sum() == 0
        else:
            assert (batch["spec_lens"] - batch["mel_lens"]).sum() == 0

        # zero the padding frames
        batch["spec"] = batch["spec"] * sequence_mask(batch["spec_lens"]).unsqueeze(1)
        batch["mel"] = batch["mel"] * sequence_mask(batch["mel_lens"]).unsqueeze(1)
        return batch

    def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1, is_eval=False):
        weights = None
        data_items = dataset.samples
        if getattr(config, "use_weighted_sampler", False):
            for attr_name, alpha in config.weighted_sampler_attrs.items():
                print(f" > Using weighted sampler for attribute '{attr_name}' with alpha '{alpha}'")
                multi_dict = config.weighted_sampler_multipliers.get(attr_name, None)
                print(multi_dict)
                weights, attr_names, attr_weights = get_attribute_balancer_weights(
                    attr_name=attr_name, items=data_items, multi_dict=multi_dict
                )
                weights = weights * alpha
                print(f" > Attribute weights for '{attr_names}' \n | > {attr_weights}")

        # input_audio_lenghts = [os.path.getsize(x["audio_file"]) for x in data_items]

        if weights is not None:
            w_sampler = WeightedRandomSampler(weights, len(weights))
            batch_sampler = BucketBatchSampler(
                w_sampler,
                data=data_items,
                batch_size=config.eval_batch_size if is_eval else config.batch_size,
                sort_key=lambda x: os.path.getsize(x["audio_file"]),
                drop_last=True,
            )
        else:
            batch_sampler = None
        # sampler for DDP
        if batch_sampler is None:
            batch_sampler = DistributedSampler(dataset) if num_gpus > 1 else None
        else:  # If a sampler is already defined use this sampler and DDP sampler together
            batch_sampler = (
                DistributedSamplerWrapper(batch_sampler) if num_gpus > 1 else batch_sampler
            )  # TODO: check batch_sampler with multi-gpu
        return batch_sampler

    def get_data_loader(
        self,
        config: Coqpit,
        assets: Dict,
        is_eval: bool,
        samples: Union[List[Dict], List[List]],
        verbose: bool,
        num_gpus: int,
        rank: int = None,
    ) -> "DataLoader":
        if is_eval and not config.run_eval:
            loader = None
        else:
            # init dataloader
            dataset = VitsDataset(
                model_args=self.args,
                samples=samples,
                batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size,
                min_text_len=config.min_text_len,
                max_text_len=config.max_text_len,
                min_audio_len=config.min_audio_len,
                max_audio_len=config.max_audio_len,
                phoneme_cache_path=config.phoneme_cache_path,
                precompute_num_workers=config.precompute_num_workers,
                verbose=verbose,
                tokenizer=self.tokenizer,
                start_by_longest=config.start_by_longest,
            )

            # wait all the DDP process to be ready
            if num_gpus > 1:
                dist.barrier()

            # sort input sequences from short to long
            dataset.preprocess_samples()

            # get samplers
            sampler = self.get_sampler(config, dataset, num_gpus)
            if sampler is None:
                loader = DataLoader(
                    dataset,
                    batch_size=config.eval_batch_size if is_eval else config.batch_size,
                    shuffle=False,  # shuffle is done in the dataset.
                    collate_fn=dataset.collate_fn,
                    drop_last=False,  # setting this False might cause issues in AMP training.
                    num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
                    pin_memory=False,
                )
            else:
                if num_gpus > 1:
                    loader = DataLoader(
                        dataset,
                        sampler=sampler,
                        batch_size=config.eval_batch_size if is_eval else config.batch_size,
                        collate_fn=dataset.collate_fn,
                        num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
                        pin_memory=False,
                    )
                else:
                    loader = DataLoader(
                        dataset,
                        batch_sampler=sampler,
                        collate_fn=dataset.collate_fn,
                        num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
                        pin_memory=False,
                    )
        return loader

    def get_optimizer(self) -> List:
        """Initiate and return the GAN optimizers based on the config parameters.
        It returnes 2 optimizers in a list. First one is for the generator and the second one is for the discriminator.
        Returns:
            List: optimizers.
        """
        # select generator parameters
        optimizer0 = get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.disc)

        gen_parameters = chain(params for k, params in self.named_parameters() if not k.startswith("disc."))
        optimizer1 = get_optimizer(
            self.config.optimizer, self.config.optimizer_params, self.config.lr_gen, parameters=gen_parameters
        )
        return [optimizer0, optimizer1]

    def get_lr(self) -> List:
        """Set the initial learning rates for each optimizer.

        Returns:
            List: learning rates for each optimizer.
        """
        return [self.config.lr_disc, self.config.lr_gen]

    def get_scheduler(self, optimizer) -> List:
        """Set the schedulers for each optimizer.

        Args:
            optimizer (List[`torch.optim.Optimizer`]): List of optimizers.

        Returns:
            List: Schedulers, one for each optimizer.
        """
        scheduler_D = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[0])
        scheduler_G = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[1])
        return [scheduler_D, scheduler_G]

    def get_criterion(self):
        """Get criterions for each optimizer. The index in the output list matches the optimizer idx used in
        `train_step()`"""
        from TTS.tts.layers.losses import (  # pylint: disable=import-outside-toplevel
            VitsDiscriminatorLoss,
            VitsGeneratorLoss,
        )

        return [VitsDiscriminatorLoss(self.config), VitsGeneratorLoss(self.config)]

    def load_checkpoint(
        self, config, checkpoint_path, eval=False, strict=True, cache=False
    ):  # pylint: disable=unused-argument, redefined-builtin
        """Load the model checkpoint and setup for training or inference"""
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
        # compat band-aid for the pre-trained models to not use the encoder baked into the model
        # TODO: consider baking the speaker encoder into the model and call it from there.
        # as it is probably easier for model distribution.
        state["model"] = {k: v for k, v in state["model"].items() if "speaker_encoder" not in k}

        if self.args.encoder_sample_rate is not None and eval:
            # audio resampler is not used in inference time
            self.audio_resampler = None

        # handle fine-tuning from a checkpoint with additional speakers
        if hasattr(self, "emb_g") and state["model"]["emb_g.weight"].shape != self.emb_g.weight.shape:
            num_new_speakers = self.emb_g.weight.shape[0] - state["model"]["emb_g.weight"].shape[0]
            print(f" > Loading checkpoint with {num_new_speakers} additional speakers.")
            emb_g = state["model"]["emb_g.weight"]
            new_row = torch.randn(num_new_speakers, emb_g.shape[1])
            emb_g = torch.cat([emb_g, new_row], axis=0)
            state["model"]["emb_g.weight"] = emb_g
        # load the model weights
        self.load_state_dict(state["model"], strict=strict)

        if eval:
            self.eval()
            assert not self.training

    def load_fairseq_checkpoint(
        self, config, checkpoint_dir, eval=False, strict=True
    ):  # pylint: disable=unused-argument, redefined-builtin
        """Load VITS checkpoints released by fairseq here: https://github.com/facebookresearch/fairseq/tree/main/examples/mms
        Performs some changes for compatibility.

        Args:
            config (Coqpit): 🐸TTS model config.
            checkpoint_dir (str): Path to the checkpoint directory.
            eval (bool, optional): Set to True for evaluation. Defaults to False.
        """
        import json

        from TTS.tts.utils.text.cleaners import basic_cleaners

        self.disc = None
        # set paths
        config_file = os.path.join(checkpoint_dir, "config.json")
        checkpoint_file = os.path.join(checkpoint_dir, "G_100000.pth")
        vocab_file = os.path.join(checkpoint_dir, "vocab.txt")
        # set config params
        with open(config_file, "r", encoding="utf-8") as file:
            # Load the JSON data as a dictionary
            config_org = json.load(file)
        self.config.audio.sample_rate = config_org["data"]["sampling_rate"]
        # self.config.add_blank = config['add_blank']
        # set tokenizer
        vocab = FairseqVocab(vocab_file)
        self.text_encoder.emb = nn.Embedding(vocab.num_chars, config.model_args.hidden_channels)
        self.tokenizer = TTSTokenizer(
            use_phonemes=False,
            text_cleaner=basic_cleaners,
            characters=vocab,
            phonemizer=None,
            add_blank=config_org["data"]["add_blank"],
            use_eos_bos=False,
        )
        # load fairseq checkpoint
        new_chk = rehash_fairseq_vits_checkpoint(checkpoint_file)
        self.load_state_dict(new_chk, strict=strict)
        if eval:
            self.eval()
            assert not self.training

    @staticmethod
    def init_from_config(config: "VitsConfig", samples: Union[List[List], List[Dict]] = None, verbose=True):
        """Initiate model from config

        Args:
            config (VitsConfig): Model config.
            samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.
                Defaults to None.
        """
        from TTS.utils.audio import AudioProcessor

        upsample_rate = torch.prod(torch.as_tensor(config.model_args.upsample_rates_decoder)).item()

        if not config.model_args.encoder_sample_rate:
            assert (
                upsample_rate == config.audio.hop_length
            ), f" [!] Product of upsample rates must be equal to the hop length - {upsample_rate} vs {config.audio.hop_length}"
        else:
            encoder_to_vocoder_upsampling_factor = config.audio.sample_rate / config.model_args.encoder_sample_rate
            effective_hop_length = config.audio.hop_length * encoder_to_vocoder_upsampling_factor
            assert (
                upsample_rate == effective_hop_length
            ), f" [!] Product of upsample rates must be equal to the hop length - {upsample_rate} vs {effective_hop_length}"

        ap = AudioProcessor.init_from_config(config, verbose=verbose)
        tokenizer, new_config = TTSTokenizer.init_from_config(config)
        speaker_manager = SpeakerManager.init_from_config(config, samples)
        language_manager = LanguageManager.init_from_config(config)

        if config.model_args.speaker_encoder_model_path:
            speaker_manager.init_encoder(
                config.model_args.speaker_encoder_model_path, config.model_args.speaker_encoder_config_path
            )
        return Vits(new_config, ap, tokenizer, speaker_manager, language_manager)

    def export_onnx(self, output_path: str = "coqui_vits.onnx", verbose: bool = True):
        """Export model to ONNX format for inference

        Args:
            output_path (str): Path to save the exported model.
            verbose (bool): Print verbose information. Defaults to True.
        """

        # rollback values
        _forward = self.forward
        disc = None
        if hasattr(self, "disc"):
            disc = self.disc
        training = self.training

        # set export mode
        self.disc = None
        self.eval()

        def onnx_inference(text, text_lengths, scales, sid=None, langid=None):
            noise_scale = scales[0]
            length_scale = scales[1]
            noise_scale_dp = scales[2]
            self.noise_scale = noise_scale
            self.length_scale = length_scale
            self.noise_scale_dp = noise_scale_dp
            return self.inference(
                text,
                aux_input={
                    "x_lengths": text_lengths,
                    "d_vectors": None,
                    "speaker_ids": sid,
                    "language_ids": langid,
                    "durations": None,
                },
            )["model_outputs"]

        self.forward = onnx_inference

        # set dummy inputs
        dummy_input_length = 100
        sequences = torch.randint(low=0, high=2, size=(1, dummy_input_length), dtype=torch.long)
        sequence_lengths = torch.LongTensor([sequences.size(1)])
        scales = torch.FloatTensor([self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp])
        dummy_input = (sequences, sequence_lengths, scales)
        input_names = ["input", "input_lengths", "scales"]

        if self.num_speakers > 0:
            speaker_id = torch.LongTensor([0])
            dummy_input += (speaker_id,)
            input_names.append("sid")

        if hasattr(self, "num_languages") and self.num_languages > 0 and self.embedded_language_dim > 0:
            language_id = torch.LongTensor([0])
            dummy_input += (language_id,)
            input_names.append("langid")

        # export to ONNX
        torch.onnx.export(
            model=self,
            args=dummy_input,
            opset_version=15,
            f=output_path,
            verbose=verbose,
            input_names=input_names,
            output_names=["output"],
            dynamic_axes={
                "input": {0: "batch_size", 1: "phonemes"},
                "input_lengths": {0: "batch_size"},
                "output": {0: "batch_size", 1: "time1", 2: "time2"},
            },
        )

        # rollback
        self.forward = _forward
        if training:
            self.train()
        if not disc is None:
            self.disc = disc

    def load_onnx(self, model_path: str, cuda=False):
        import onnxruntime as ort

        providers = [
            "CPUExecutionProvider"
            if cuda is False
            else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"})
        ]
        sess_options = ort.SessionOptions()
        self.onnx_sess = ort.InferenceSession(
            model_path,
            sess_options=sess_options,
            providers=providers,
        )

    def inference_onnx(self, x, x_lengths=None, speaker_id=None, language_id=None):
        """ONNX inference"""

        if isinstance(x, torch.Tensor):
            x = x.cpu().numpy()

        if x_lengths is None:
            x_lengths = np.array([x.shape[1]], dtype=np.int64)

        if isinstance(x_lengths, torch.Tensor):
            x_lengths = x_lengths.cpu().numpy()
        scales = np.array(
            [self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp],
            dtype=np.float32,
        )
        input_params = {"input": x, "input_lengths": x_lengths, "scales": scales}
        if not speaker_id is None:
            input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy()
        if not language_id is None:
            input_params["langid"] = torch.tensor([language_id]).cpu().numpy()

        audio = self.onnx_sess.run(
            ["output"],
            input_params,
        )
        return audio[0][0]


##################################
# VITS CHARACTERS
##################################


class VitsCharacters(BaseCharacters):
    """Characters class for VITs model for compatibility with pre-trained models"""

    def __init__(
        self,
        graphemes: str = _characters,
        punctuations: str = _punctuations,
        pad: str = _pad,
        ipa_characters: str = _phonemes,
    ) -> None:
        if ipa_characters is not None:
            graphemes += ipa_characters
        super().__init__(graphemes, punctuations, pad, None, None, "<BLNK>", is_unique=False, is_sorted=True)

    def _create_vocab(self):
        self._vocab = [self._pad] + list(self._punctuations) + list(self._characters) + [self._blank]
        self._char_to_id = {char: idx for idx, char in enumerate(self.vocab)}
        # pylint: disable=unnecessary-comprehension
        self._id_to_char = {idx: char for idx, char in enumerate(self.vocab)}

    @staticmethod
    def init_from_config(config: Coqpit):
        if config.characters is not None:
            _pad = config.characters["pad"]
            _punctuations = config.characters["punctuations"]
            _letters = config.characters["characters"]
            _letters_ipa = config.characters["phonemes"]
            return (
                VitsCharacters(graphemes=_letters, ipa_characters=_letters_ipa, punctuations=_punctuations, pad=_pad),
                config,
            )
        characters = VitsCharacters()
        new_config = replace(config, characters=characters.to_config())
        return characters, new_config

    def to_config(self) -> "CharactersConfig":
        return CharactersConfig(
            characters=self._characters,
            punctuations=self._punctuations,
            pad=self._pad,
            eos=None,
            bos=None,
            blank=self._blank,
            is_unique=False,
            is_sorted=True,
        )


class FairseqVocab(BaseVocabulary):
    def __init__(self, vocab: str):
        super(FairseqVocab).__init__()
        self.vocab = vocab

    @property
    def vocab(self):
        """Return the vocabulary dictionary."""
        return self._vocab

    @vocab.setter
    def vocab(self, vocab_file):
        with open(vocab_file, encoding="utf-8") as f:
            self._vocab = [x.replace("\n", "") for x in f.readlines()]
        self.blank = self._vocab[0]
        self.pad = " "
        self._char_to_id = {s: i for i, s in enumerate(self._vocab)}  # pylint: disable=unnecessary-comprehension
        self._id_to_char = {i: s for i, s in enumerate(self._vocab)}  # pylint: disable=unnecessary-comprehension