File size: 9,020 Bytes
813828b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import hashlib
import os
import string
import subprocess
import sys
from datetime import datetime
import torch
import torchaudio
from huggingface_hub import hf_hub_download, snapshot_download
from underthesea import sent_tokenize
from unidecode import unidecode
from vinorm import TTSnorm

from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts

XTTS_MODEL = None
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
MODEL_DIR = os.path.join(SCRIPT_DIR, "model")
OUTPUT_DIR = os.path.join(SCRIPT_DIR, "output")
FILTER_SUFFIX = "_DeepFilterNet3.wav"
os.makedirs(OUTPUT_DIR, exist_ok=True)


def clear_gpu_cache():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()


def load_model(checkpoint_dir="model/", repo_id="capleaf/viXTTS", use_deepspeed=False):
    global XTTS_MODEL
    clear_gpu_cache()
    os.makedirs(checkpoint_dir, exist_ok=True)

    required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
    files_in_dir = os.listdir(checkpoint_dir)
    if not all(file in files_in_dir for file in required_files):
        yield f"Missing model files! Downloading from {repo_id}..."
        snapshot_download(
            repo_id=repo_id,
            repo_type="model",
            local_dir=checkpoint_dir,
        )
        hf_hub_download(
            repo_id="coqui/XTTS-v2",
            filename="speakers_xtts.pth",
            local_dir=checkpoint_dir,
        )
        yield f"Model download finished..."

    xtts_config = os.path.join(checkpoint_dir, "config.json")
    config = XttsConfig()
    config.load_json(xtts_config)
    XTTS_MODEL = Xtts.init_from_config(config)
    yield "Loading model..."
    XTTS_MODEL.load_checkpoint(config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed)
    if torch.cuda.is_available():
        XTTS_MODEL.cuda()

    print("Model Loaded!")
    yield "Model Loaded!"


# Define dictionaries to store cached results
cache_queue = []
speaker_audio_cache = {}
filter_cache = {}
conditioning_latents_cache = {}


def invalidate_cache(cache_limit=50):
    """Invalidate the cache for the oldest key"""
    if len(cache_queue) > cache_limit:
        key_to_remove = cache_queue.pop(0)
        print("Invalidating cache", key_to_remove)
        if os.path.exists(key_to_remove):
            os.remove(key_to_remove)
        if os.path.exists(key_to_remove.replace(".wav", "_DeepFilterNet3.wav")):
            os.remove(key_to_remove.replace(".wav", "_DeepFilterNet3.wav"))
        if key_to_remove in filter_cache:
            del filter_cache[key_to_remove]
        if key_to_remove in conditioning_latents_cache:
            del conditioning_latents_cache[key_to_remove]


def generate_hash(data):
    hash_object = hashlib.md5()
    hash_object.update(data)
    return hash_object.hexdigest()


def get_file_name(text, max_char=50):
    filename = text[:max_char]
    filename = filename.lower()
    filename = filename.replace(" ", "_")
    filename = filename.translate(str.maketrans("", "", string.punctuation.replace("_", "")))
    filename = unidecode(filename)
    current_datetime = datetime.now().strftime("%m%d%H%M%S")
    filename = f"{current_datetime}_{filename}"
    return filename

from unicodedata import normalize
def normalize_vietnamese_text(text):
    text = (
        normalize("NFC", text)
        .replace("..", ".")
        .replace("!.", "!")
        .replace("?.", "?")
        .replace(" .", ".")
        .replace(" ,", ",")
        .replace('"', "")
        .replace("'", "")
        .replace("AI", "Ây Ai")
        .replace("A.I", "Ây Ai")
    )
    return text


def calculate_keep_len(text, lang):
    """Simple hack for short sentences"""
    if lang in ["ja", "zh-cn"]:
        return -1

    word_count = len(text.split())
    num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")

    if word_count < 5:
        return 15000 * word_count + 2000 * num_punct
    elif word_count < 10:
        return 13000 * word_count + 2000 * num_punct
    return -1


def run_tts(lang, tts_text, speaker_audio_file, use_deepfilter, normalize_text):
    global filter_cache, conditioning_latents_cache, cache_queue

    if XTTS_MODEL is None:
        return "You need to run the previous step to load the model !!", None, None

    if not speaker_audio_file:
        return "You need to provide reference audio!!!", None, None

    # Use the file name as the key, since it's suppose to be unique 💀
    speaker_audio_key = speaker_audio_file
    if not speaker_audio_key in cache_queue:
        cache_queue.append(speaker_audio_key)
        invalidate_cache()

    # Check if filtered reference is cached
    if use_deepfilter and speaker_audio_key in filter_cache:
        print("Using filter cache...")
        speaker_audio_file = filter_cache[speaker_audio_key]
    elif use_deepfilter:
        print("Running filter...")
        subprocess.run(
            [
                "deepFilter",
                speaker_audio_file,
                "-o",
                os.path.dirname(speaker_audio_file),
            ]
        )
        filter_cache[speaker_audio_key] = speaker_audio_file.replace(".wav", FILTER_SUFFIX)
        speaker_audio_file = filter_cache[speaker_audio_key]

    # Check if conditioning latents are cached
    cache_key = (
        speaker_audio_key,
        XTTS_MODEL.config.gpt_cond_len,
        XTTS_MODEL.config.max_ref_len,
        XTTS_MODEL.config.sound_norm_refs,
    )
    if cache_key in conditioning_latents_cache:
        print("Using conditioning latents cache...")
        gpt_cond_latent, speaker_embedding = conditioning_latents_cache[cache_key]
    else:
        print("Computing conditioning latents...")
        gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(
            audio_path=speaker_audio_file,
            gpt_cond_len=XTTS_MODEL.config.gpt_cond_len,
            max_ref_length=XTTS_MODEL.config.max_ref_len,
            sound_norm_refs=XTTS_MODEL.config.sound_norm_refs,
        )
        conditioning_latents_cache[cache_key] = (gpt_cond_latent, speaker_embedding)

    if normalize_text and lang == "vi":
        tts_text = normalize_vietnamese_text(tts_text)

    # Split text by sentence
    if lang in ["ja", "zh-cn"]:
        sentences = tts_text.split("。")
    else:
        sentences = sent_tokenize(tts_text)

    wav_chunks = []
    for sentence in sentences:
        if sentence.strip() == "":
            continue
        wav_chunk = XTTS_MODEL.inference(
            text=sentence,
            language=lang,
            gpt_cond_latent=gpt_cond_latent,
            speaker_embedding=speaker_embedding,
            # The following values are carefully chosen for viXTTS
            temperature=0.3,
            length_penalty=1.0,
            repetition_penalty=10.0,
            top_k=30,
            top_p=0.85,
            enable_text_splitting=True,
        )

        keep_len = calculate_keep_len(sentence, lang)
        wav_chunk["wav"] = wav_chunk["wav"][:keep_len]

        wav_chunks.append(torch.tensor(wav_chunk["wav"]))

    out_wav = torch.cat(wav_chunks, dim=0).unsqueeze(0)
    out_path = os.path.join(OUTPUT_DIR, f"{get_file_name(tts_text)}.wav")
    print("Saving output to ", out_path)
    torchaudio.save(out_path, out_wav, 24000)

    return "Speech generated !", out_path




def create_interface():
    try:
        # Gọi hàm load_model để tải mô hình
        model_loading_gen = load_model(checkpoint_dir=MODEL_DIR, repo_id="capleaf/viXTTS", use_deepspeed=False)

        # Chạy hàm này cho đến khi mô hình được tải xong
        for message in model_loading_gen:
            print(message)  # In ra thông báo trạng thái tải mô hình

        # Các tham số khác
        speaker_audio_files = [
            r"samples\nu-nhe-nhang.wav",
            r"samples\nu-nhan-nha.wav",
            r"samples\nu-luu-loat.wav",
            r"samples\nu-cham.wav",
            r"samples\nu-calm.wav",
            r"samples\nam-truyen-cam.wav",
            r"samples\nam-nhanh.wav",
            r"samples\nam-cham.wav",
            r"samples\nam-calm.wav",
        ]

        speaker_audio_file = speaker_audio_files[0]
        # Các tham số khác
        lang = "vi"
        normalize_text = True
        use_deepfilter = False
        tts_text = "Chào bạn, tôi là một trợ lý ảo."

        # Gọi hàm run_tts sau khi mô hình đã được tải
        return run_tts(lang, tts_text, speaker_audio_file, use_deepfilter, normalize_text)
    except Exception as e:
        return f"Error loading model: {str(e)}", None, None


# Gọi hàm create_interface để bắt đầu quá trình
print(create_interface())