duyv's picture
Upload 381 files
813828b verified
raw
history blame
32.3 kB
import os
from dataclasses import dataclass
import librosa
import torch
import torch.nn.functional as F
import torchaudio
from coqpit import Coqpit
from TTS.tts.layers.xtts.gpt import GPT
from TTS.tts.layers.xtts.hifigan_decoder import HifiDecoder
from TTS.tts.layers.xtts.stream_generator import init_stream_support
from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer, split_sentence
from TTS.tts.layers.xtts.xtts_manager import SpeakerManager, LanguageManager
from TTS.tts.models.base_tts import BaseTTS
from TTS.utils.io import load_fsspec
init_stream_support()
def wav_to_mel_cloning(
wav,
mel_norms_file="../experiments/clips_mel_norms.pth",
mel_norms=None,
device=torch.device("cpu"),
n_fft=4096,
hop_length=1024,
win_length=4096,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
):
"""
Convert waveform to mel-spectrogram with hard-coded parameters for cloning.
Args:
wav (torch.Tensor): Input waveform tensor.
mel_norms_file (str): Path to mel-spectrogram normalization file.
mel_norms (torch.Tensor): Mel-spectrogram normalization tensor.
device (torch.device): Device to use for computation.
Returns:
torch.Tensor: Mel-spectrogram tensor.
"""
mel_stft = torchaudio.transforms.MelSpectrogram(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
power=power,
normalized=normalized,
sample_rate=sample_rate,
f_min=f_min,
f_max=f_max,
n_mels=n_mels,
norm="slaney",
).to(device)
wav = wav.to(device)
mel = mel_stft(wav)
mel = torch.log(torch.clamp(mel, min=1e-5))
if mel_norms is None:
mel_norms = torch.load(mel_norms_file, map_location=device)
mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1)
return mel
def load_audio(audiopath, sampling_rate):
# better load setting following: https://github.com/faroit/python_audio_loading_benchmark
# torchaudio should chose proper backend to load audio depending on platform
audio, lsr = torchaudio.load(audiopath)
# stereo to mono if needed
if audio.size(0) != 1:
audio = torch.mean(audio, dim=0, keepdim=True)
if lsr != sampling_rate:
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
# '10' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
if torch.any(audio > 10) or not torch.any(audio < 0):
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
# clip audio invalid values
audio.clip_(-1, 1)
return audio
def pad_or_truncate(t, length):
"""
Ensure a given tensor t has a specified sequence length by either padding it with zeros or clipping it.
Args:
t (torch.Tensor): The input tensor to be padded or truncated.
length (int): The desired length of the tensor.
Returns:
torch.Tensor: The padded or truncated tensor.
"""
tp = t[..., :length]
if t.shape[-1] == length:
tp = t
elif t.shape[-1] < length:
tp = F.pad(t, (0, length - t.shape[-1]))
return tp
@dataclass
class XttsAudioConfig(Coqpit):
"""
Configuration class for audio-related parameters in the XTTS model.
Args:
sample_rate (int): The sample rate in which the GPT operates.
output_sample_rate (int): The sample rate of the output audio waveform.
"""
sample_rate: int = 22050
output_sample_rate: int = 24000
@dataclass
class XttsArgs(Coqpit):
"""A dataclass to represent XTTS model arguments that define the model structure.
Args:
gpt_batch_size (int): The size of the auto-regressive batch.
enable_redaction (bool, optional): Whether to enable redaction. Defaults to True.
kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True.
gpt_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None.
clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None.
decoder_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None.
num_chars (int, optional): The maximum number of characters to generate. Defaults to 255.
For GPT model:
gpt_max_audio_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604.
gpt_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402.
gpt_max_prompt_tokens (int, optional): The maximum prompt tokens or the autoregressive model. Defaults to 70.
gpt_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30.
gpt_n_model_channels (int, optional): The model dimension for the autoregressive model. Defaults to 1024.
gpt_n_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16.
gpt_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255.
gpt_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255.
gpt_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False.
gpt_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False.
gpt_code_stride_len (int, optional): The hop_size of dvae and consequently of the gpt output. Defaults to 1024.
gpt_use_masking_gt_prompt_approach (bool, optional): If True, it will use ground truth as prompt and it will mask the loss to avoid repetition. Defaults to True.
gpt_use_perceiver_resampler (bool, optional): If True, it will use perceiver resampler from flamingo paper - https://arxiv.org/abs/2204.14198. Defaults to False.
"""
gpt_batch_size: int = 1
enable_redaction: bool = False
kv_cache: bool = True
gpt_checkpoint: str = None
clvp_checkpoint: str = None
decoder_checkpoint: str = None
num_chars: int = 255
# XTTS GPT Encoder params
tokenizer_file: str = ""
gpt_max_audio_tokens: int = 605
gpt_max_text_tokens: int = 402
gpt_max_prompt_tokens: int = 70
gpt_layers: int = 30
gpt_n_model_channels: int = 1024
gpt_n_heads: int = 16
gpt_number_text_tokens: int = None
gpt_start_text_token: int = None
gpt_stop_text_token: int = None
gpt_num_audio_tokens: int = 8194
gpt_start_audio_token: int = 8192
gpt_stop_audio_token: int = 8193
gpt_code_stride_len: int = 1024
gpt_use_masking_gt_prompt_approach: bool = True
gpt_use_perceiver_resampler: bool = False
# HifiGAN Decoder params
input_sample_rate: int = 22050
output_sample_rate: int = 24000
output_hop_length: int = 256
decoder_input_dim: int = 1024
d_vector_dim: int = 512
cond_d_vector_in_each_upsampling_layer: bool = True
# constants
duration_const: int = 102400
class Xtts(BaseTTS):
"""ⓍTTS model implementation.
❗ Currently it only supports inference.
Examples:
>>> from TTS.tts.configs.xtts_config import XttsConfig
>>> from TTS.tts.models.xtts import Xtts
>>> config = XttsConfig()
>>> model = Xtts.inif_from_config(config)
>>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True)
"""
def __init__(self, config: Coqpit):
super().__init__(config, ap=None, tokenizer=None)
self.mel_stats_path = None
self.config = config
self.gpt_checkpoint = self.args.gpt_checkpoint
self.decoder_checkpoint = self.args.decoder_checkpoint # TODO: check if this is even needed
self.models_dir = config.model_dir
self.gpt_batch_size = self.args.gpt_batch_size
self.tokenizer = VoiceBpeTokenizer()
self.gpt = None
self.init_models()
self.register_buffer("mel_stats", torch.ones(80))
def init_models(self):
"""Initialize the models. We do it here since we need to load the tokenizer first."""
if self.tokenizer.tokenizer is not None:
self.args.gpt_number_text_tokens = self.tokenizer.get_number_tokens()
self.args.gpt_start_text_token = self.tokenizer.tokenizer.token_to_id("[START]")
self.args.gpt_stop_text_token = self.tokenizer.tokenizer.token_to_id("[STOP]")
if self.args.gpt_number_text_tokens:
self.gpt = GPT(
layers=self.args.gpt_layers,
model_dim=self.args.gpt_n_model_channels,
start_text_token=self.args.gpt_start_text_token,
stop_text_token=self.args.gpt_stop_text_token,
heads=self.args.gpt_n_heads,
max_text_tokens=self.args.gpt_max_text_tokens,
max_mel_tokens=self.args.gpt_max_audio_tokens,
max_prompt_tokens=self.args.gpt_max_prompt_tokens,
number_text_tokens=self.args.gpt_number_text_tokens,
num_audio_tokens=self.args.gpt_num_audio_tokens,
start_audio_token=self.args.gpt_start_audio_token,
stop_audio_token=self.args.gpt_stop_audio_token,
use_perceiver_resampler=self.args.gpt_use_perceiver_resampler,
code_stride_len=self.args.gpt_code_stride_len,
)
self.hifigan_decoder = HifiDecoder(
input_sample_rate=self.args.input_sample_rate,
output_sample_rate=self.args.output_sample_rate,
output_hop_length=self.args.output_hop_length,
ar_mel_length_compression=self.args.gpt_code_stride_len,
decoder_input_dim=self.args.decoder_input_dim,
d_vector_dim=self.args.d_vector_dim,
cond_d_vector_in_each_upsampling_layer=self.args.cond_d_vector_in_each_upsampling_layer,
)
@property
def device(self):
return next(self.parameters()).device
@torch.inference_mode()
def get_gpt_cond_latents(self, audio, sr, length: int = 30, chunk_length: int = 6):
"""Compute the conditioning latents for the GPT model from the given audio.
Args:
audio (tensor): audio tensor.
sr (int): Sample rate of the audio.
length (int): Length of the audio in seconds. If < 0, use the whole audio. Defaults to 30.
chunk_length (int): Length of the audio chunks in seconds. When `length == chunk_length`, the whole audio
is being used without chunking. It must be < `length`. Defaults to 6.
"""
if sr != 22050:
audio = torchaudio.functional.resample(audio, sr, 22050)
if length > 0:
audio = audio[:, : 22050 * length]
if self.args.gpt_use_perceiver_resampler:
style_embs = []
for i in range(0, audio.shape[1], 22050 * chunk_length):
audio_chunk = audio[:, i : i + 22050 * chunk_length]
# if the chunk is too short ignore it
if audio_chunk.size(-1) < 22050 * 0.33:
continue
mel_chunk = wav_to_mel_cloning(
audio_chunk,
mel_norms=self.mel_stats.cpu(),
n_fft=2048,
hop_length=256,
win_length=1024,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
)
style_emb = self.gpt.get_style_emb(mel_chunk.to(self.device), None)
style_embs.append(style_emb)
# mean style embedding
cond_latent = torch.stack(style_embs).mean(dim=0)
else:
mel = wav_to_mel_cloning(
audio,
mel_norms=self.mel_stats.cpu(),
n_fft=4096,
hop_length=1024,
win_length=4096,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
)
cond_latent = self.gpt.get_style_emb(mel.to(self.device))
return cond_latent.transpose(1, 2)
@torch.inference_mode()
def get_speaker_embedding(self, audio, sr):
audio_16k = torchaudio.functional.resample(audio, sr, 16000)
return (
self.hifigan_decoder.speaker_encoder.forward(audio_16k.to(self.device), l2_norm=True)
.unsqueeze(-1)
.to(self.device)
)
@torch.inference_mode()
def get_conditioning_latents(
self,
audio_path,
max_ref_length=30,
gpt_cond_len=6,
gpt_cond_chunk_len=6,
librosa_trim_db=None,
sound_norm_refs=False,
load_sr=22050,
):
"""Get the conditioning latents for the GPT model from the given audio.
Args:
audio_path (str or List[str]): Path to reference audio file(s).
max_ref_length (int): Maximum length of each reference audio in seconds. Defaults to 30.
gpt_cond_len (int): Length of the audio used for gpt latents. Defaults to 6.
gpt_cond_chunk_len (int): Chunk length used for gpt latents. It must be <= gpt_conf_len. Defaults to 6.
librosa_trim_db (int, optional): Trim the audio using this value. If None, not trimming. Defaults to None.
sound_norm_refs (bool, optional): Whether to normalize the audio. Defaults to False.
load_sr (int, optional): Sample rate to load the audio. Defaults to 24000.
"""
# deal with multiples references
if not isinstance(audio_path, list):
audio_paths = [audio_path]
else:
audio_paths = audio_path
speaker_embeddings = []
audios = []
speaker_embedding = None
for file_path in audio_paths:
audio = load_audio(file_path, load_sr)
audio = audio[:, : load_sr * max_ref_length].to(self.device)
if sound_norm_refs:
audio = (audio / torch.abs(audio).max()) * 0.75
if librosa_trim_db is not None:
audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0]
# compute latents for the decoder
speaker_embedding = self.get_speaker_embedding(audio, load_sr)
speaker_embeddings.append(speaker_embedding)
audios.append(audio)
# merge all the audios and compute the latents for the gpt
full_audio = torch.cat(audios, dim=-1)
gpt_cond_latents = self.get_gpt_cond_latents(
full_audio, load_sr, length=gpt_cond_len, chunk_length=gpt_cond_chunk_len
) # [1, 1024, T]
if speaker_embeddings:
speaker_embedding = torch.stack(speaker_embeddings)
speaker_embedding = speaker_embedding.mean(dim=0)
return gpt_cond_latents, speaker_embedding
def synthesize(self, text, config, speaker_wav, language, speaker_id=None, **kwargs):
"""Synthesize speech with the given input text.
Args:
text (str): Input text.
config (XttsConfig): Config with inference parameters.
speaker_wav (list): List of paths to the speaker audio files to be used for cloning.
language (str): Language ID of the speaker.
**kwargs: Inference settings. See `inference()`.
Returns:
A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference,
`text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents`
as latents used at inference.
"""
assert (
"zh-cn" if language == "zh" else language in self.config.languages
), f" ❗ Language {language} is not supported. Supported languages are {self.config.languages}"
# Use generally found best tuning knobs for generation.
settings = {
"temperature": config.temperature,
"length_penalty": config.length_penalty,
"repetition_penalty": config.repetition_penalty,
"top_k": config.top_k,
"top_p": config.top_p,
}
settings.update(kwargs) # allow overriding of preset settings with kwargs
if speaker_id is not None:
gpt_cond_latent, speaker_embedding = self.speaker_manager.speakers[speaker_id].values()
return self.inference(text, language, gpt_cond_latent, speaker_embedding, **settings)
settings.update({
"gpt_cond_len": config.gpt_cond_len,
"gpt_cond_chunk_len": config.gpt_cond_chunk_len,
"max_ref_len": config.max_ref_len,
"sound_norm_refs": config.sound_norm_refs,
})
return self.full_inference(text, speaker_wav, language, **settings)
@torch.inference_mode()
def full_inference(
self,
text,
ref_audio_path,
language,
# GPT inference
temperature=0.75,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=50,
top_p=0.85,
do_sample=True,
# Cloning
gpt_cond_len=30,
gpt_cond_chunk_len=6,
max_ref_len=10,
sound_norm_refs=False,
**hf_generate_kwargs,
):
"""
This function produces an audio clip of the given text being spoken with the given reference voice.
Args:
text: (str) Text to be spoken.
ref_audio_path: (str) Path to a reference audio file to be used for cloning. This audio file should be >3
seconds long.
language: (str) Language of the voice to be generated.
temperature: (float) The softmax temperature of the autoregressive model. Defaults to 0.65.
length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the
model to produce more terse outputs. Defaults to 1.0.
repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during
decoding. Can be used to reduce the incidence of long silences or "uhhhhhhs", etc. Defaults to 2.0.
top_k: (int) K value used in top-k sampling. [0,inf]. Lower values mean the decoder produces more "likely"
(aka boring) outputs. Defaults to 50.
top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely"
(aka boring) outputs. Defaults to 0.8.
gpt_cond_len: (int) Length of the audio used for cloning. If audio is shorter, then audio length is used
else the first `gpt_cond_len` secs is used. Defaults to 30 seconds.
gpt_cond_chunk_len: (int) Chunk length used for cloning. It must be <= `gpt_cond_len`.
If gpt_cond_len == gpt_cond_chunk_len, no chunking. Defaults to 6 seconds.
hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive
transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation
here: https://huggingface.co/docs/transformers/internal/generation_utils
Returns:
Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
Sample rate is 24kHz.
"""
(gpt_cond_latent, speaker_embedding) = self.get_conditioning_latents(
audio_path=ref_audio_path,
gpt_cond_len=gpt_cond_len,
gpt_cond_chunk_len=gpt_cond_chunk_len,
max_ref_length=max_ref_len,
sound_norm_refs=sound_norm_refs,
)
return self.inference(
text,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
do_sample=do_sample,
**hf_generate_kwargs,
)
@torch.inference_mode()
def inference(
self,
text,
language,
gpt_cond_latent,
speaker_embedding,
# GPT inference
temperature=0.75,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=50,
top_p=0.85,
do_sample=True,
num_beams=1,
speed=1.0,
enable_text_splitting=False,
**hf_generate_kwargs,
):
language = language.split("-")[0] # remove the country code
length_scale = 1.0 / max(speed, 0.05)
gpt_cond_latent = gpt_cond_latent.to(self.device)
speaker_embedding = speaker_embedding.to(self.device)
if enable_text_splitting:
text = split_sentence(text, language, self.tokenizer.char_limits[language])
else:
text = [text]
wavs = []
gpt_latents_list = []
for sent in text:
sent = sent.strip().lower()
text_tokens = torch.IntTensor(self.tokenizer.encode(sent, lang=language)).unsqueeze(0).to(self.device)
assert (
text_tokens.shape[-1] < self.args.gpt_max_text_tokens
), " ❗ XTTS can only generate text with a maximum of 400 tokens."
with torch.no_grad():
gpt_codes = self.gpt.generate(
cond_latents=gpt_cond_latent,
text_inputs=text_tokens,
input_tokens=None,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=self.gpt_batch_size,
num_beams=num_beams,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
output_attentions=False,
**hf_generate_kwargs,
)
expected_output_len = torch.tensor(
[gpt_codes.shape[-1] * self.gpt.code_stride_len], device=text_tokens.device
)
text_len = torch.tensor([text_tokens.shape[-1]], device=self.device)
gpt_latents = self.gpt(
text_tokens,
text_len,
gpt_codes,
expected_output_len,
cond_latents=gpt_cond_latent,
return_attentions=False,
return_latent=True,
)
if length_scale != 1.0:
gpt_latents = F.interpolate(
gpt_latents.transpose(1, 2), scale_factor=length_scale, mode="linear"
).transpose(1, 2)
gpt_latents_list.append(gpt_latents.cpu())
wavs.append(self.hifigan_decoder(gpt_latents, g=speaker_embedding).cpu().squeeze())
return {
"wav": torch.cat(wavs, dim=0).numpy(),
"gpt_latents": torch.cat(gpt_latents_list, dim=1).numpy(),
"speaker_embedding": speaker_embedding,
}
def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len):
"""Handle chunk formatting in streaming mode"""
wav_chunk = wav_gen[:-overlap_len]
if wav_gen_prev is not None:
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) : -overlap_len]
if wav_overlap is not None:
# cross fade the overlap section
if overlap_len > len(wav_chunk):
# wav_chunk is smaller than overlap_len, pass on last wav_gen
if wav_gen_prev is not None:
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) :]
else:
# not expecting will hit here as problem happens on last chunk
wav_chunk = wav_gen[-overlap_len:]
return wav_chunk, wav_gen, None
else:
crossfade_wav = wav_chunk[:overlap_len]
crossfade_wav = crossfade_wav * torch.linspace(0.0, 1.0, overlap_len).to(crossfade_wav.device)
wav_chunk[:overlap_len] = wav_overlap * torch.linspace(1.0, 0.0, overlap_len).to(wav_overlap.device)
wav_chunk[:overlap_len] += crossfade_wav
wav_overlap = wav_gen[-overlap_len:]
wav_gen_prev = wav_gen
return wav_chunk, wav_gen_prev, wav_overlap
@torch.inference_mode()
def inference_stream(
self,
text,
language,
gpt_cond_latent,
speaker_embedding,
# Streaming
stream_chunk_size=20,
overlap_wav_len=1024,
# GPT inference
temperature=0.75,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=50,
top_p=0.85,
do_sample=True,
speed=1.0,
enable_text_splitting=False,
**hf_generate_kwargs,
):
language = language.split("-")[0] # remove the country code
length_scale = 1.0 / max(speed, 0.05)
gpt_cond_latent = gpt_cond_latent.to(self.device)
speaker_embedding = speaker_embedding.to(self.device)
if enable_text_splitting:
text = split_sentence(text, language, self.tokenizer.char_limits[language])
else:
text = [text]
for sent in text:
sent = sent.strip().lower()
text_tokens = torch.IntTensor(self.tokenizer.encode(sent, lang=language)).unsqueeze(0).to(self.device)
assert (
text_tokens.shape[-1] < self.args.gpt_max_text_tokens
), " ❗ XTTS can only generate text with a maximum of 400 tokens."
fake_inputs = self.gpt.compute_embeddings(
gpt_cond_latent.to(self.device),
text_tokens,
)
gpt_generator = self.gpt.get_generator(
fake_inputs=fake_inputs,
top_k=top_k,
top_p=top_p,
temperature=temperature,
do_sample=do_sample,
num_beams=1,
num_return_sequences=1,
length_penalty=float(length_penalty),
repetition_penalty=float(repetition_penalty),
output_attentions=False,
output_hidden_states=True,
**hf_generate_kwargs,
)
last_tokens = []
all_latents = []
wav_gen_prev = None
wav_overlap = None
is_end = False
while not is_end:
try:
x, latent = next(gpt_generator)
last_tokens += [x]
all_latents += [latent]
except StopIteration:
is_end = True
if is_end or (stream_chunk_size > 0 and len(last_tokens) >= stream_chunk_size):
gpt_latents = torch.cat(all_latents, dim=0)[None, :]
if length_scale != 1.0:
gpt_latents = F.interpolate(
gpt_latents.transpose(1, 2), scale_factor=length_scale, mode="linear"
).transpose(1, 2)
wav_gen = self.hifigan_decoder(gpt_latents, g=speaker_embedding.to(self.device))
wav_chunk, wav_gen_prev, wav_overlap = self.handle_chunks(
wav_gen.squeeze(), wav_gen_prev, wav_overlap, overlap_wav_len
)
last_tokens = []
yield wav_chunk
def forward(self):
raise NotImplementedError(
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training"
)
def eval_step(self):
raise NotImplementedError(
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training"
)
@staticmethod
def init_from_config(config: "XttsConfig", **kwargs): # pylint: disable=unused-argument
return Xtts(config)
def eval(self): # pylint: disable=redefined-builtin
"""Sets the model to evaluation mode. Overrides the default eval() method to also set the GPT model to eval mode."""
self.gpt.init_gpt_for_inference()
super().eval()
def get_compatible_checkpoint_state_dict(self, model_path):
checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"]
# remove xtts gpt trainer extra keys
ignore_keys = ["torch_mel_spectrogram_style_encoder", "torch_mel_spectrogram_dvae", "dvae"]
for key in list(checkpoint.keys()):
# check if it is from the coqui Trainer if so convert it
if key.startswith("xtts."):
new_key = key.replace("xtts.", "")
checkpoint[new_key] = checkpoint[key]
del checkpoint[key]
key = new_key
# remove unused keys
if key.split(".")[0] in ignore_keys:
del checkpoint[key]
return checkpoint
def load_checkpoint(
self,
config,
checkpoint_dir=None,
checkpoint_path=None,
vocab_path=None,
eval=True,
strict=True,
use_deepspeed=False,
speaker_file_path=None,
):
"""
Loads a checkpoint from disk and initializes the model's state and tokenizer.
Args:
config (dict): The configuration dictionary for the model.
checkpoint_dir (str, optional): The directory where the checkpoint is stored. Defaults to None.
checkpoint_path (str, optional): The path to the checkpoint file. Defaults to None.
vocab_path (str, optional): The path to the vocabulary file. Defaults to None.
eval (bool, optional): Whether to set the model to evaluation mode. Defaults to True.
strict (bool, optional): Whether to strictly enforce that the keys in the checkpoint match the keys in the model. Defaults to True.
Returns:
None
"""
model_path = checkpoint_path or os.path.join(checkpoint_dir, "model.pth")
vocab_path = vocab_path or os.path.join(checkpoint_dir, "vocab.json")
if speaker_file_path is None and checkpoint_dir is not None:
speaker_file_path = os.path.join(checkpoint_dir, "speakers_xtts.pth")
self.language_manager = LanguageManager(config)
self.speaker_manager = None
if speaker_file_path is not None and os.path.exists(speaker_file_path):
self.speaker_manager = SpeakerManager(speaker_file_path)
if os.path.exists(vocab_path):
self.tokenizer = VoiceBpeTokenizer(vocab_file=vocab_path)
self.init_models()
checkpoint = self.get_compatible_checkpoint_state_dict(model_path)
# deal with v1 and v1.1. V1 has the init_gpt_for_inference keys, v1.1 do not
try:
self.load_state_dict(checkpoint, strict=strict)
except:
if eval:
self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache)
self.load_state_dict(checkpoint, strict=strict)
if eval:
self.hifigan_decoder.eval()
self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache, use_deepspeed=use_deepspeed)
self.gpt.eval()
def train_step(self):
raise NotImplementedError(
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training"
)