duyv's picture
Upload 381 files
813828b verified
raw
history blame
15 kB
# Adopted from https://github.com/photosynthesis-team/piq
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
def _reduce(x: torch.Tensor, reduction: str = "mean") -> torch.Tensor:
r"""Reduce input in batch dimension if needed.
Args:
x: Tensor with shape (N, *).
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'mean'``
"""
if reduction == "none":
return x
if reduction == "mean":
return x.mean(dim=0)
if reduction == "sum":
return x.sum(dim=0)
raise ValueError("Unknown reduction. Expected one of {'none', 'mean', 'sum'}")
def _validate_input(
tensors: List[torch.Tensor],
dim_range: Tuple[int, int] = (0, -1),
data_range: Tuple[float, float] = (0.0, -1.0),
# size_dim_range: Tuple[float, float] = (0., -1.),
size_range: Optional[Tuple[int, int]] = None,
) -> None:
r"""Check that input(-s) satisfies the requirements
Args:
tensors: Tensors to check
dim_range: Allowed number of dimensions. (min, max)
data_range: Allowed range of values in tensors. (min, max)
size_range: Dimensions to include in size comparison. (start_dim, end_dim + 1)
"""
if not __debug__:
return
x = tensors[0]
for t in tensors:
assert torch.is_tensor(t), f"Expected torch.Tensor, got {type(t)}"
assert t.device == x.device, f"Expected tensors to be on {x.device}, got {t.device}"
if size_range is None:
assert t.size() == x.size(), f"Expected tensors with same size, got {t.size()} and {x.size()}"
else:
assert (
t.size()[size_range[0] : size_range[1]] == x.size()[size_range[0] : size_range[1]]
), f"Expected tensors with same size at given dimensions, got {t.size()} and {x.size()}"
if dim_range[0] == dim_range[1]:
assert t.dim() == dim_range[0], f"Expected number of dimensions to be {dim_range[0]}, got {t.dim()}"
elif dim_range[0] < dim_range[1]:
assert (
dim_range[0] <= t.dim() <= dim_range[1]
), f"Expected number of dimensions to be between {dim_range[0]} and {dim_range[1]}, got {t.dim()}"
if data_range[0] < data_range[1]:
assert data_range[0] <= t.min(), f"Expected values to be greater or equal to {data_range[0]}, got {t.min()}"
assert t.max() <= data_range[1], f"Expected values to be lower or equal to {data_range[1]}, got {t.max()}"
def gaussian_filter(kernel_size: int, sigma: float) -> torch.Tensor:
r"""Returns 2D Gaussian kernel N(0,`sigma`^2)
Args:
size: Size of the kernel
sigma: Std of the distribution
Returns:
gaussian_kernel: Tensor with shape (1, kernel_size, kernel_size)
"""
coords = torch.arange(kernel_size, dtype=torch.float32)
coords -= (kernel_size - 1) / 2.0
g = coords**2
g = (-(g.unsqueeze(0) + g.unsqueeze(1)) / (2 * sigma**2)).exp()
g /= g.sum()
return g.unsqueeze(0)
def ssim(
x: torch.Tensor,
y: torch.Tensor,
kernel_size: int = 11,
kernel_sigma: float = 1.5,
data_range: Union[int, float] = 1.0,
reduction: str = "mean",
full: bool = False,
downsample: bool = True,
k1: float = 0.01,
k2: float = 0.03,
) -> List[torch.Tensor]:
r"""Interface of Structural Similarity (SSIM) index.
Inputs supposed to be in range ``[0, data_range]``.
To match performance with skimage and tensorflow set ``'downsample' = True``.
Args:
x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`.
y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`.
kernel_size: The side-length of the sliding window used in comparison. Must be an odd value.
kernel_sigma: Sigma of normal distribution.
data_range: Maximum value range of images (usually 1.0 or 255).
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'``
full: Return cs map or not.
downsample: Perform average pool before SSIM computation. Default: True
k1: Algorithm parameter, K1 (small constant).
k2: Algorithm parameter, K2 (small constant).
Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
Returns:
Value of Structural Similarity (SSIM) index. In case of 5D input tensors, complex value is returned
as a tensor of size 2.
References:
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004).
Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing, 13, 600-612.
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
DOI: `10.1109/TIP.2003.819861`
"""
assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]"
_validate_input([x, y], dim_range=(4, 5), data_range=(0, data_range))
x = x / float(data_range)
y = y / float(data_range)
# Averagepool image if the size is large enough
f = max(1, round(min(x.size()[-2:]) / 256))
if (f > 1) and downsample:
x = F.avg_pool2d(x, kernel_size=f)
y = F.avg_pool2d(y, kernel_size=f)
kernel = gaussian_filter(kernel_size, kernel_sigma).repeat(x.size(1), 1, 1, 1).to(y)
_compute_ssim_per_channel = _ssim_per_channel_complex if x.dim() == 5 else _ssim_per_channel
ssim_map, cs_map = _compute_ssim_per_channel(x=x, y=y, kernel=kernel, k1=k1, k2=k2)
ssim_val = ssim_map.mean(1)
cs = cs_map.mean(1)
ssim_val = _reduce(ssim_val, reduction)
cs = _reduce(cs, reduction)
if full:
return [ssim_val, cs]
return ssim_val
class SSIMLoss(_Loss):
r"""Creates a criterion that measures the structural similarity index error between
each element in the input :math:`x` and target :math:`y`.
To match performance with skimage and tensorflow set ``'downsample' = True``.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
SSIM = \{ssim_1,\dots,ssim_{N \times C}\}\\
ssim_{l}(x, y) = \frac{(2 \mu_x \mu_y + c_1) (2 \sigma_{xy} + c_2)}
{(\mu_x^2 +\mu_y^2 + c_1)(\sigma_x^2 +\sigma_y^2 + c_2)},
where :math:`N` is the batch size, `C` is the channel size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
SSIMLoss(x, y) =
\begin{cases}
\operatorname{mean}(1 - SSIM), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(1 - SSIM), & \text{if reduction} = \text{'sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`n` elements each.
The sum operation still operates over all the elements, and divides by :math:`n`.
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.
In case of 5D input tensors, complex value is returned as a tensor of size 2.
Args:
kernel_size: By default, the mean and covariance of a pixel is obtained
by convolution with given filter_size.
kernel_sigma: Standard deviation for Gaussian kernel.
k1: Coefficient related to c1 in the above equation.
k2: Coefficient related to c2 in the above equation.
downsample: Perform average pool before SSIM computation. Default: True
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'``
data_range: Maximum value range of images (usually 1.0 or 255).
Examples:
>>> loss = SSIMLoss()
>>> x = torch.rand(3, 3, 256, 256, requires_grad=True)
>>> y = torch.rand(3, 3, 256, 256)
>>> output = loss(x, y)
>>> output.backward()
References:
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004).
Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing, 13, 600-612.
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
DOI:`10.1109/TIP.2003.819861`
"""
__constants__ = ["kernel_size", "k1", "k2", "sigma", "kernel", "reduction"]
def __init__(
self,
kernel_size: int = 11,
kernel_sigma: float = 1.5,
k1: float = 0.01,
k2: float = 0.03,
downsample: bool = True,
reduction: str = "mean",
data_range: Union[int, float] = 1.0,
) -> None:
super().__init__()
# Generic loss parameters.
self.reduction = reduction
# Loss-specific parameters.
self.kernel_size = kernel_size
# This check might look redundant because kernel size is checked within the ssim function anyway.
# However, this check allows to fail fast when the loss is being initialised and training has not been started.
assert kernel_size % 2 == 1, f"Kernel size must be odd, got [{kernel_size}]"
self.kernel_sigma = kernel_sigma
self.k1 = k1
self.k2 = k2
self.downsample = downsample
self.data_range = data_range
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
r"""Computation of Structural Similarity (SSIM) index as a loss function.
Args:
x: An input tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`.
y: A target tensor. Shape :math:`(N, C, H, W)` or :math:`(N, C, H, W, 2)`.
Returns:
Value of SSIM loss to be minimized, i.e ``1 - ssim`` in [0, 1] range. In case of 5D input tensors,
complex value is returned as a tensor of size 2.
"""
score = ssim(
x=x,
y=y,
kernel_size=self.kernel_size,
kernel_sigma=self.kernel_sigma,
downsample=self.downsample,
data_range=self.data_range,
reduction=self.reduction,
full=False,
k1=self.k1,
k2=self.k2,
)
return torch.ones_like(score) - score
def _ssim_per_channel(
x: torch.Tensor,
y: torch.Tensor,
kernel: torch.Tensor,
k1: float = 0.01,
k2: float = 0.03,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
r"""Calculate Structural Similarity (SSIM) index for X and Y per channel.
Args:
x: An input tensor. Shape :math:`(N, C, H, W)`.
y: A target tensor. Shape :math:`(N, C, H, W)`.
kernel: 2D Gaussian kernel.
k1: Algorithm parameter, K1 (small constant, see [1]).
k2: Algorithm parameter, K2 (small constant, see [1]).
Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
Returns:
Full Value of Structural Similarity (SSIM) index.
"""
if x.size(-1) < kernel.size(-1) or x.size(-2) < kernel.size(-2):
raise ValueError(
f"Kernel size can't be greater than actual input size. Input size: {x.size()}. "
f"Kernel size: {kernel.size()}"
)
c1 = k1**2
c2 = k2**2
n_channels = x.size(1)
mu_x = F.conv2d(x, weight=kernel, stride=1, padding=0, groups=n_channels)
mu_y = F.conv2d(y, weight=kernel, stride=1, padding=0, groups=n_channels)
mu_xx = mu_x**2
mu_yy = mu_y**2
mu_xy = mu_x * mu_y
sigma_xx = F.conv2d(x**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xx
sigma_yy = F.conv2d(y**2, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_yy
sigma_xy = F.conv2d(x * y, weight=kernel, stride=1, padding=0, groups=n_channels) - mu_xy
# Contrast sensitivity (CS) with alpha = beta = gamma = 1.
cs = (2.0 * sigma_xy + c2) / (sigma_xx + sigma_yy + c2)
# Structural similarity (SSIM)
ss = (2.0 * mu_xy + c1) / (mu_xx + mu_yy + c1) * cs
ssim_val = ss.mean(dim=(-1, -2))
cs = cs.mean(dim=(-1, -2))
return ssim_val, cs
def _ssim_per_channel_complex(
x: torch.Tensor,
y: torch.Tensor,
kernel: torch.Tensor,
k1: float = 0.01,
k2: float = 0.03,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
r"""Calculate Structural Similarity (SSIM) index for Complex X and Y per channel.
Args:
x: An input tensor. Shape :math:`(N, C, H, W, 2)`.
y: A target tensor. Shape :math:`(N, C, H, W, 2)`.
kernel: 2-D gauss kernel.
k1: Algorithm parameter, K1 (small constant, see [1]).
k2: Algorithm parameter, K2 (small constant, see [1]).
Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
Returns:
Full Value of Complex Structural Similarity (SSIM) index.
"""
n_channels = x.size(1)
if x.size(-2) < kernel.size(-1) or x.size(-3) < kernel.size(-2):
raise ValueError(
f"Kernel size can't be greater than actual input size. Input size: {x.size()}. "
f"Kernel size: {kernel.size()}"
)
c1 = k1**2
c2 = k2**2
x_real = x[..., 0]
x_imag = x[..., 1]
y_real = y[..., 0]
y_imag = y[..., 1]
mu1_real = F.conv2d(x_real, weight=kernel, stride=1, padding=0, groups=n_channels)
mu1_imag = F.conv2d(x_imag, weight=kernel, stride=1, padding=0, groups=n_channels)
mu2_real = F.conv2d(y_real, weight=kernel, stride=1, padding=0, groups=n_channels)
mu2_imag = F.conv2d(y_imag, weight=kernel, stride=1, padding=0, groups=n_channels)
mu1_sq = mu1_real.pow(2) + mu1_imag.pow(2)
mu2_sq = mu2_real.pow(2) + mu2_imag.pow(2)
mu1_mu2_real = mu1_real * mu2_real - mu1_imag * mu2_imag
mu1_mu2_imag = mu1_real * mu2_imag + mu1_imag * mu2_real
compensation = 1.0
x_sq = x_real.pow(2) + x_imag.pow(2)
y_sq = y_real.pow(2) + y_imag.pow(2)
x_y_real = x_real * y_real - x_imag * y_imag
x_y_imag = x_real * y_imag + x_imag * y_real
sigma1_sq = F.conv2d(x_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_sq
sigma2_sq = F.conv2d(y_sq, weight=kernel, stride=1, padding=0, groups=n_channels) - mu2_sq
sigma12_real = F.conv2d(x_y_real, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_real
sigma12_imag = F.conv2d(x_y_imag, weight=kernel, stride=1, padding=0, groups=n_channels) - mu1_mu2_imag
sigma12 = torch.stack((sigma12_imag, sigma12_real), dim=-1)
mu1_mu2 = torch.stack((mu1_mu2_real, mu1_mu2_imag), dim=-1)
# Set alpha = beta = gamma = 1.
cs_map = (sigma12 * 2 + c2 * compensation) / (sigma1_sq.unsqueeze(-1) + sigma2_sq.unsqueeze(-1) + c2 * compensation)
ssim_map = (mu1_mu2 * 2 + c1 * compensation) / (mu1_sq.unsqueeze(-1) + mu2_sq.unsqueeze(-1) + c1 * compensation)
ssim_map = ssim_map * cs_map
ssim_val = ssim_map.mean(dim=(-2, -3))
cs = cs_map.mean(dim=(-2, -3))
return ssim_val, cs