|
import os |
|
from dataclasses import dataclass, field |
|
|
|
from coqpit import Coqpit |
|
from trainer import TrainerArgs, get_last_checkpoint |
|
from trainer.io import copy_model_files |
|
from trainer.logging import logger_factory |
|
from trainer.logging.console_logger import ConsoleLogger |
|
|
|
from TTS.config import load_config, register_config |
|
from TTS.tts.utils.text.characters import parse_symbols |
|
from TTS.utils.generic_utils import get_experiment_folder_path, get_git_branch |
|
|
|
|
|
@dataclass |
|
class TrainArgs(TrainerArgs): |
|
config_path: str = field(default=None, metadata={"help": "Path to the config file."}) |
|
|
|
|
|
def getarguments(): |
|
train_config = TrainArgs() |
|
parser = train_config.init_argparse(arg_prefix="") |
|
return parser |
|
|
|
|
|
def process_args(args, config=None): |
|
"""Process parsed comand line arguments and initialize the config if not provided. |
|
Args: |
|
args (argparse.Namespace or dict like): Parsed input arguments. |
|
config (Coqpit): Model config. If none, it is generated from `args`. Defaults to None. |
|
Returns: |
|
c (TTS.utils.io.AttrDict): Config paramaters. |
|
out_path (str): Path to save models and logging. |
|
audio_path (str): Path to save generated test audios. |
|
c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does |
|
logging to the console. |
|
dashboard_logger (WandbLogger or TensorboardLogger): Class that does the dashboard Logging |
|
TODO: |
|
- Interactive config definition. |
|
""" |
|
if isinstance(args, tuple): |
|
args, coqpit_overrides = args |
|
if args.continue_path: |
|
|
|
experiment_path = args.continue_path |
|
args.config_path = os.path.join(args.continue_path, "config.json") |
|
args.restore_path, best_model = get_last_checkpoint(args.continue_path) |
|
if not args.best_path: |
|
args.best_path = best_model |
|
|
|
if config is None: |
|
if args.config_path: |
|
|
|
config = load_config(args.config_path) |
|
else: |
|
|
|
from TTS.config.shared_configs import BaseTrainingConfig |
|
|
|
config_base = BaseTrainingConfig() |
|
config_base.parse_known_args(coqpit_overrides) |
|
config = register_config(config_base.model)() |
|
|
|
config.parse_known_args(coqpit_overrides, relaxed_parser=True) |
|
experiment_path = args.continue_path |
|
if not experiment_path: |
|
experiment_path = get_experiment_folder_path(config.output_path, config.run_name) |
|
audio_path = os.path.join(experiment_path, "test_audios") |
|
config.output_log_path = experiment_path |
|
|
|
dashboard_logger = None |
|
if args.rank == 0: |
|
new_fields = {} |
|
if args.restore_path: |
|
new_fields["restore_path"] = args.restore_path |
|
new_fields["github_branch"] = get_git_branch() |
|
|
|
|
|
|
|
if config.has("characters") and config.characters is None: |
|
used_characters = parse_symbols() |
|
new_fields["characters"] = used_characters |
|
copy_model_files(config, experiment_path, new_fields) |
|
dashboard_logger = logger_factory(config, experiment_path) |
|
c_logger = ConsoleLogger() |
|
return config, experiment_path, audio_path, c_logger, dashboard_logger |
|
|
|
|
|
def init_arguments(): |
|
train_config = TrainArgs() |
|
parser = train_config.init_argparse(arg_prefix="") |
|
return parser |
|
|
|
|
|
def init_training(config: Coqpit = None): |
|
"""Initialization of a training run.""" |
|
parser = init_arguments() |
|
args = parser.parse_known_args() |
|
config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = process_args(args, config) |
|
return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger |
|
|