|
|
|
import datetime |
|
import importlib |
|
import logging |
|
import os |
|
import re |
|
import subprocess |
|
import sys |
|
from pathlib import Path |
|
from typing import Dict |
|
|
|
import fsspec |
|
import torch |
|
|
|
|
|
def to_cuda(x: torch.Tensor) -> torch.Tensor: |
|
if x is None: |
|
return None |
|
if torch.is_tensor(x): |
|
x = x.contiguous() |
|
if torch.cuda.is_available(): |
|
x = x.cuda(non_blocking=True) |
|
return x |
|
|
|
|
|
def get_cuda(): |
|
use_cuda = torch.cuda.is_available() |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
return use_cuda, device |
|
|
|
|
|
def get_git_branch(): |
|
try: |
|
out = subprocess.check_output(["git", "branch"]).decode("utf8") |
|
current = next(line for line in out.split("\n") if line.startswith("*")) |
|
current.replace("* ", "") |
|
except subprocess.CalledProcessError: |
|
current = "inside_docker" |
|
except (FileNotFoundError, StopIteration) as e: |
|
current = "unknown" |
|
return current |
|
|
|
|
|
def get_commit_hash(): |
|
"""https://stackoverflow.com/questions/14989858/get-the-current-git-hash-in-a-python-script""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
commit = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode().strip() |
|
|
|
except (subprocess.CalledProcessError, FileNotFoundError): |
|
commit = "0000000" |
|
return commit |
|
|
|
|
|
def get_experiment_folder_path(root_path, model_name): |
|
"""Get an experiment folder path with the current date and time""" |
|
date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I+%M%p") |
|
commit_hash = get_commit_hash() |
|
output_folder = os.path.join(root_path, model_name + "-" + date_str + "-" + commit_hash) |
|
return output_folder |
|
|
|
|
|
def remove_experiment_folder(experiment_path): |
|
"""Check folder if there is a checkpoint, otherwise remove the folder""" |
|
fs = fsspec.get_mapper(experiment_path).fs |
|
checkpoint_files = fs.glob(experiment_path + "/*.pth") |
|
if not checkpoint_files: |
|
if fs.exists(experiment_path): |
|
fs.rm(experiment_path, recursive=True) |
|
print(" ! Run is removed from {}".format(experiment_path)) |
|
else: |
|
print(" ! Run is kept in {}".format(experiment_path)) |
|
|
|
|
|
def count_parameters(model): |
|
r"""Count number of trainable parameters in a network""" |
|
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
|
|
def to_camel(text): |
|
text = text.capitalize() |
|
text = re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text) |
|
text = text.replace("Tts", "TTS") |
|
text = text.replace("vc", "VC") |
|
return text |
|
|
|
|
|
def find_module(module_path: str, module_name: str) -> object: |
|
module_name = module_name.lower() |
|
module = importlib.import_module(module_path + "." + module_name) |
|
class_name = to_camel(module_name) |
|
return getattr(module, class_name) |
|
|
|
|
|
def import_class(module_path: str) -> object: |
|
"""Import a class from a module path. |
|
|
|
Args: |
|
module_path (str): The module path of the class. |
|
|
|
Returns: |
|
object: The imported class. |
|
""" |
|
class_name = module_path.split(".")[-1] |
|
module_path = ".".join(module_path.split(".")[:-1]) |
|
module = importlib.import_module(module_path) |
|
return getattr(module, class_name) |
|
|
|
|
|
def get_import_path(obj: object) -> str: |
|
"""Get the import path of a class. |
|
|
|
Args: |
|
obj (object): The class object. |
|
|
|
Returns: |
|
str: The import path of the class. |
|
""" |
|
return ".".join([type(obj).__module__, type(obj).__name__]) |
|
|
|
|
|
def get_user_data_dir(appname): |
|
TTS_HOME = os.environ.get("TTS_HOME") |
|
XDG_DATA_HOME = os.environ.get("XDG_DATA_HOME") |
|
if TTS_HOME is not None: |
|
ans = Path(TTS_HOME).expanduser().resolve(strict=False) |
|
elif XDG_DATA_HOME is not None: |
|
ans = Path(XDG_DATA_HOME).expanduser().resolve(strict=False) |
|
elif sys.platform == "win32": |
|
import winreg |
|
|
|
key = winreg.OpenKey( |
|
winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders" |
|
) |
|
dir_, _ = winreg.QueryValueEx(key, "Local AppData") |
|
ans = Path(dir_).resolve(strict=False) |
|
elif sys.platform == "darwin": |
|
ans = Path("~/Library/Application Support/").expanduser() |
|
else: |
|
ans = Path.home().joinpath(".local/share") |
|
return ans.joinpath(appname) |
|
|
|
|
|
def set_init_dict(model_dict, checkpoint_state, c): |
|
|
|
for k, v in checkpoint_state.items(): |
|
if k not in model_dict: |
|
print(" | > Layer missing in the model definition: {}".format(k)) |
|
|
|
pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict} |
|
|
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()} |
|
|
|
if c.has("reinit_layers") and c.reinit_layers is not None: |
|
for reinit_layer_name in c.reinit_layers: |
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k} |
|
|
|
model_dict.update(pretrained_dict) |
|
print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict))) |
|
return model_dict |
|
|
|
|
|
def format_aux_input(def_args: Dict, kwargs: Dict) -> Dict: |
|
"""Format kwargs to hande auxilary inputs to models. |
|
|
|
Args: |
|
def_args (Dict): A dictionary of argument names and their default values if not defined in `kwargs`. |
|
kwargs (Dict): A `dict` or `kwargs` that includes auxilary inputs to the model. |
|
|
|
Returns: |
|
Dict: arguments with formatted auxilary inputs. |
|
""" |
|
kwargs = kwargs.copy() |
|
for name in def_args: |
|
if name not in kwargs or kwargs[name] is None: |
|
kwargs[name] = def_args[name] |
|
return kwargs |
|
|
|
|
|
class KeepAverage: |
|
def __init__(self): |
|
self.avg_values = {} |
|
self.iters = {} |
|
|
|
def __getitem__(self, key): |
|
return self.avg_values[key] |
|
|
|
def items(self): |
|
return self.avg_values.items() |
|
|
|
def add_value(self, name, init_val=0, init_iter=0): |
|
self.avg_values[name] = init_val |
|
self.iters[name] = init_iter |
|
|
|
def update_value(self, name, value, weighted_avg=False): |
|
if name not in self.avg_values: |
|
|
|
self.add_value(name, init_val=value) |
|
else: |
|
|
|
if weighted_avg: |
|
self.avg_values[name] = 0.99 * self.avg_values[name] + 0.01 * value |
|
self.iters[name] += 1 |
|
else: |
|
self.avg_values[name] = self.avg_values[name] * self.iters[name] + value |
|
self.iters[name] += 1 |
|
self.avg_values[name] /= self.iters[name] |
|
|
|
def add_values(self, name_dict): |
|
for key, value in name_dict.items(): |
|
self.add_value(key, init_val=value) |
|
|
|
def update_values(self, value_dict): |
|
for key, value in value_dict.items(): |
|
self.update_value(key, value) |
|
|
|
|
|
def get_timestamp(): |
|
return datetime.now().strftime("%y%m%d-%H%M%S") |
|
|
|
|
|
def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False): |
|
lg = logging.getLogger(logger_name) |
|
formatter = logging.Formatter("%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s", datefmt="%y-%m-%d %H:%M:%S") |
|
lg.setLevel(level) |
|
if tofile: |
|
log_file = os.path.join(root, phase + "_{}.log".format(get_timestamp())) |
|
fh = logging.FileHandler(log_file, mode="w") |
|
fh.setFormatter(formatter) |
|
lg.addHandler(fh) |
|
if screen: |
|
sh = logging.StreamHandler() |
|
sh.setFormatter(formatter) |
|
lg.addHandler(sh) |
|
|