TTS-Model / viXTTS /TTS /utils /samplers.py
duyv's picture
Upload 381 files
813828b verified
import math
import random
from typing import Callable, List, Union
from torch.utils.data.sampler import BatchSampler, Sampler, SubsetRandomSampler
class SubsetSampler(Sampler):
"""
Samples elements sequentially from a given list of indices.
Args:
indices (list): a sequence of indices
"""
def __init__(self, indices):
super().__init__(indices)
self.indices = indices
def __iter__(self):
return (self.indices[i] for i in range(len(self.indices)))
def __len__(self):
return len(self.indices)
class PerfectBatchSampler(Sampler):
"""
Samples a mini-batch of indices for a balanced class batching
Args:
dataset_items(list): dataset items to sample from.
classes (list): list of classes of dataset_items to sample from.
batch_size (int): total number of samples to be sampled in a mini-batch.
num_gpus (int): number of GPU in the data parallel mode.
shuffle (bool): if True, samples randomly, otherwise samples sequentially.
drop_last (bool): if True, drops last incomplete batch.
"""
def __init__(
self,
dataset_items,
classes,
batch_size,
num_classes_in_batch,
num_gpus=1,
shuffle=True,
drop_last=False,
label_key="class_name",
):
super().__init__(dataset_items)
assert (
batch_size % (num_classes_in_batch * num_gpus) == 0
), "Batch size must be divisible by number of classes times the number of data parallel devices (if enabled)."
label_indices = {}
for idx, item in enumerate(dataset_items):
label = item[label_key]
if label not in label_indices.keys():
label_indices[label] = [idx]
else:
label_indices[label].append(idx)
if shuffle:
self._samplers = [SubsetRandomSampler(label_indices[key]) for key in classes]
else:
self._samplers = [SubsetSampler(label_indices[key]) for key in classes]
self._batch_size = batch_size
self._drop_last = drop_last
self._dp_devices = num_gpus
self._num_classes_in_batch = num_classes_in_batch
def __iter__(self):
batch = []
if self._num_classes_in_batch != len(self._samplers):
valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch)
else:
valid_samplers_idx = None
iters = [iter(s) for s in self._samplers]
done = False
while True:
b = []
for i, it in enumerate(iters):
if valid_samplers_idx is not None and i not in valid_samplers_idx:
continue
idx = next(it, None)
if idx is None:
done = True
break
b.append(idx)
if done:
break
batch += b
if len(batch) == self._batch_size:
yield batch
batch = []
if valid_samplers_idx is not None:
valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch)
if not self._drop_last:
if len(batch) > 0:
groups = len(batch) // self._num_classes_in_batch
if groups % self._dp_devices == 0:
yield batch
else:
batch = batch[: (groups // self._dp_devices) * self._dp_devices * self._num_classes_in_batch]
if len(batch) > 0:
yield batch
def __len__(self):
class_batch_size = self._batch_size // self._num_classes_in_batch
return min(((len(s) + class_batch_size - 1) // class_batch_size) for s in self._samplers)
def identity(x):
return x
class SortedSampler(Sampler):
"""Samples elements sequentially, always in the same order.
Taken from https://github.com/PetrochukM/PyTorch-NLP
Args:
data (iterable): Iterable data.
sort_key (callable): Specifies a function of one argument that is used to extract a
numerical comparison key from each list element.
Example:
>>> list(SortedSampler(range(10), sort_key=lambda i: -i))
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
"""
def __init__(self, data, sort_key: Callable = identity):
super().__init__(data)
self.data = data
self.sort_key = sort_key
zip_ = [(i, self.sort_key(row)) for i, row in enumerate(self.data)]
zip_ = sorted(zip_, key=lambda r: r[1])
self.sorted_indexes = [item[0] for item in zip_]
def __iter__(self):
return iter(self.sorted_indexes)
def __len__(self):
return len(self.data)
class BucketBatchSampler(BatchSampler):
"""Bucket batch sampler
Adapted from https://github.com/PetrochukM/PyTorch-NLP
Args:
sampler (torch.data.utils.sampler.Sampler):
batch_size (int): Size of mini-batch.
drop_last (bool): If `True` the sampler will drop the last batch if its size would be less
than `batch_size`.
data (list): List of data samples.
sort_key (callable, optional): Callable to specify a comparison key for sorting.
bucket_size_multiplier (int, optional): Buckets are of size
`batch_size * bucket_size_multiplier`.
Example:
>>> sampler = WeightedRandomSampler(weights, len(weights))
>>> sampler = BucketBatchSampler(sampler, data=data_items, batch_size=32, drop_last=True)
"""
def __init__(
self,
sampler,
data,
batch_size,
drop_last,
sort_key: Union[Callable, List] = identity,
bucket_size_multiplier=100,
):
super().__init__(sampler, batch_size, drop_last)
self.data = data
self.sort_key = sort_key
_bucket_size = batch_size * bucket_size_multiplier
if hasattr(sampler, "__len__"):
_bucket_size = min(_bucket_size, len(sampler))
self.bucket_sampler = BatchSampler(sampler, _bucket_size, False)
def __iter__(self):
for idxs in self.bucket_sampler:
bucket_data = [self.data[idx] for idx in idxs]
sorted_sampler = SortedSampler(bucket_data, self.sort_key)
for batch_idx in SubsetRandomSampler(list(BatchSampler(sorted_sampler, self.batch_size, self.drop_last))):
sorted_idxs = [idxs[i] for i in batch_idx]
yield sorted_idxs
def __len__(self):
if self.drop_last:
return len(self.sampler) // self.batch_size
return math.ceil(len(self.sampler) / self.batch_size)