import os from dataclasses import dataclass import librosa import torch import torch.nn.functional as F import torchaudio from coqpit import Coqpit from TTS.tts.layers.xtts.gpt import GPT from TTS.tts.layers.xtts.hifigan_decoder import HifiDecoder from TTS.tts.layers.xtts.stream_generator import init_stream_support from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer, split_sentence from TTS.tts.layers.xtts.xtts_manager import SpeakerManager, LanguageManager from TTS.tts.models.base_tts import BaseTTS from TTS.utils.io import load_fsspec init_stream_support() def wav_to_mel_cloning( wav, mel_norms_file="../experiments/clips_mel_norms.pth", mel_norms=None, device=torch.device("cpu"), n_fft=4096, hop_length=1024, win_length=4096, power=2, normalized=False, sample_rate=22050, f_min=0, f_max=8000, n_mels=80, ): """ Convert waveform to mel-spectrogram with hard-coded parameters for cloning. Args: wav (torch.Tensor): Input waveform tensor. mel_norms_file (str): Path to mel-spectrogram normalization file. mel_norms (torch.Tensor): Mel-spectrogram normalization tensor. device (torch.device): Device to use for computation. Returns: torch.Tensor: Mel-spectrogram tensor. """ mel_stft = torchaudio.transforms.MelSpectrogram( n_fft=n_fft, hop_length=hop_length, win_length=win_length, power=power, normalized=normalized, sample_rate=sample_rate, f_min=f_min, f_max=f_max, n_mels=n_mels, norm="slaney", ).to(device) wav = wav.to(device) mel = mel_stft(wav) mel = torch.log(torch.clamp(mel, min=1e-5)) if mel_norms is None: mel_norms = torch.load(mel_norms_file, map_location=device) mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1) return mel def load_audio(audiopath, sampling_rate): # better load setting following: https://github.com/faroit/python_audio_loading_benchmark # torchaudio should chose proper backend to load audio depending on platform audio, lsr = torchaudio.load(audiopath) # stereo to mono if needed if audio.size(0) != 1: audio = torch.mean(audio, dim=0, keepdim=True) if lsr != sampling_rate: audio = torchaudio.functional.resample(audio, lsr, sampling_rate) # Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk. # '10' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds. if torch.any(audio > 10) or not torch.any(audio < 0): print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}") # clip audio invalid values audio.clip_(-1, 1) return audio def pad_or_truncate(t, length): """ Ensure a given tensor t has a specified sequence length by either padding it with zeros or clipping it. Args: t (torch.Tensor): The input tensor to be padded or truncated. length (int): The desired length of the tensor. Returns: torch.Tensor: The padded or truncated tensor. """ tp = t[..., :length] if t.shape[-1] == length: tp = t elif t.shape[-1] < length: tp = F.pad(t, (0, length - t.shape[-1])) return tp @dataclass class XttsAudioConfig(Coqpit): """ Configuration class for audio-related parameters in the XTTS model. Args: sample_rate (int): The sample rate in which the GPT operates. output_sample_rate (int): The sample rate of the output audio waveform. """ sample_rate: int = 22050 output_sample_rate: int = 24000 @dataclass class XttsArgs(Coqpit): """A dataclass to represent XTTS model arguments that define the model structure. Args: gpt_batch_size (int): The size of the auto-regressive batch. enable_redaction (bool, optional): Whether to enable redaction. Defaults to True. kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True. gpt_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None. clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None. decoder_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None. num_chars (int, optional): The maximum number of characters to generate. Defaults to 255. For GPT model: gpt_max_audio_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604. gpt_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402. gpt_max_prompt_tokens (int, optional): The maximum prompt tokens or the autoregressive model. Defaults to 70. gpt_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30. gpt_n_model_channels (int, optional): The model dimension for the autoregressive model. Defaults to 1024. gpt_n_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16. gpt_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255. gpt_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255. gpt_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False. gpt_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False. gpt_code_stride_len (int, optional): The hop_size of dvae and consequently of the gpt output. Defaults to 1024. gpt_use_masking_gt_prompt_approach (bool, optional): If True, it will use ground truth as prompt and it will mask the loss to avoid repetition. Defaults to True. gpt_use_perceiver_resampler (bool, optional): If True, it will use perceiver resampler from flamingo paper - https://arxiv.org/abs/2204.14198. Defaults to False. """ gpt_batch_size: int = 1 enable_redaction: bool = False kv_cache: bool = True gpt_checkpoint: str = None clvp_checkpoint: str = None decoder_checkpoint: str = None num_chars: int = 255 # XTTS GPT Encoder params tokenizer_file: str = "" gpt_max_audio_tokens: int = 605 gpt_max_text_tokens: int = 402 gpt_max_prompt_tokens: int = 70 gpt_layers: int = 30 gpt_n_model_channels: int = 1024 gpt_n_heads: int = 16 gpt_number_text_tokens: int = None gpt_start_text_token: int = None gpt_stop_text_token: int = None gpt_num_audio_tokens: int = 8194 gpt_start_audio_token: int = 8192 gpt_stop_audio_token: int = 8193 gpt_code_stride_len: int = 1024 gpt_use_masking_gt_prompt_approach: bool = True gpt_use_perceiver_resampler: bool = False # HifiGAN Decoder params input_sample_rate: int = 22050 output_sample_rate: int = 24000 output_hop_length: int = 256 decoder_input_dim: int = 1024 d_vector_dim: int = 512 cond_d_vector_in_each_upsampling_layer: bool = True # constants duration_const: int = 102400 class Xtts(BaseTTS): """ⓍTTS model implementation. ❗ Currently it only supports inference. Examples: >>> from TTS.tts.configs.xtts_config import XttsConfig >>> from TTS.tts.models.xtts import Xtts >>> config = XttsConfig() >>> model = Xtts.inif_from_config(config) >>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True) """ def __init__(self, config: Coqpit): super().__init__(config, ap=None, tokenizer=None) self.mel_stats_path = None self.config = config self.gpt_checkpoint = self.args.gpt_checkpoint self.decoder_checkpoint = self.args.decoder_checkpoint # TODO: check if this is even needed self.models_dir = config.model_dir self.gpt_batch_size = self.args.gpt_batch_size self.tokenizer = VoiceBpeTokenizer() self.gpt = None self.init_models() self.register_buffer("mel_stats", torch.ones(80)) def init_models(self): """Initialize the models. We do it here since we need to load the tokenizer first.""" if self.tokenizer.tokenizer is not None: self.args.gpt_number_text_tokens = self.tokenizer.get_number_tokens() self.args.gpt_start_text_token = self.tokenizer.tokenizer.token_to_id("[START]") self.args.gpt_stop_text_token = self.tokenizer.tokenizer.token_to_id("[STOP]") if self.args.gpt_number_text_tokens: self.gpt = GPT( layers=self.args.gpt_layers, model_dim=self.args.gpt_n_model_channels, start_text_token=self.args.gpt_start_text_token, stop_text_token=self.args.gpt_stop_text_token, heads=self.args.gpt_n_heads, max_text_tokens=self.args.gpt_max_text_tokens, max_mel_tokens=self.args.gpt_max_audio_tokens, max_prompt_tokens=self.args.gpt_max_prompt_tokens, number_text_tokens=self.args.gpt_number_text_tokens, num_audio_tokens=self.args.gpt_num_audio_tokens, start_audio_token=self.args.gpt_start_audio_token, stop_audio_token=self.args.gpt_stop_audio_token, use_perceiver_resampler=self.args.gpt_use_perceiver_resampler, code_stride_len=self.args.gpt_code_stride_len, ) self.hifigan_decoder = HifiDecoder( input_sample_rate=self.args.input_sample_rate, output_sample_rate=self.args.output_sample_rate, output_hop_length=self.args.output_hop_length, ar_mel_length_compression=self.args.gpt_code_stride_len, decoder_input_dim=self.args.decoder_input_dim, d_vector_dim=self.args.d_vector_dim, cond_d_vector_in_each_upsampling_layer=self.args.cond_d_vector_in_each_upsampling_layer, ) @property def device(self): return next(self.parameters()).device @torch.inference_mode() def get_gpt_cond_latents(self, audio, sr, length: int = 30, chunk_length: int = 6): """Compute the conditioning latents for the GPT model from the given audio. Args: audio (tensor): audio tensor. sr (int): Sample rate of the audio. length (int): Length of the audio in seconds. If < 0, use the whole audio. Defaults to 30. chunk_length (int): Length of the audio chunks in seconds. When `length == chunk_length`, the whole audio is being used without chunking. It must be < `length`. Defaults to 6. """ if sr != 22050: audio = torchaudio.functional.resample(audio, sr, 22050) if length > 0: audio = audio[:, : 22050 * length] if self.args.gpt_use_perceiver_resampler: style_embs = [] for i in range(0, audio.shape[1], 22050 * chunk_length): audio_chunk = audio[:, i : i + 22050 * chunk_length] # if the chunk is too short ignore it if audio_chunk.size(-1) < 22050 * 0.33: continue mel_chunk = wav_to_mel_cloning( audio_chunk, mel_norms=self.mel_stats.cpu(), n_fft=2048, hop_length=256, win_length=1024, power=2, normalized=False, sample_rate=22050, f_min=0, f_max=8000, n_mels=80, ) style_emb = self.gpt.get_style_emb(mel_chunk.to(self.device), None) style_embs.append(style_emb) # mean style embedding cond_latent = torch.stack(style_embs).mean(dim=0) else: mel = wav_to_mel_cloning( audio, mel_norms=self.mel_stats.cpu(), n_fft=4096, hop_length=1024, win_length=4096, power=2, normalized=False, sample_rate=22050, f_min=0, f_max=8000, n_mels=80, ) cond_latent = self.gpt.get_style_emb(mel.to(self.device)) return cond_latent.transpose(1, 2) @torch.inference_mode() def get_speaker_embedding(self, audio, sr): audio_16k = torchaudio.functional.resample(audio, sr, 16000) return ( self.hifigan_decoder.speaker_encoder.forward(audio_16k.to(self.device), l2_norm=True) .unsqueeze(-1) .to(self.device) ) @torch.inference_mode() def get_conditioning_latents( self, audio_path, max_ref_length=30, gpt_cond_len=6, gpt_cond_chunk_len=6, librosa_trim_db=None, sound_norm_refs=False, load_sr=22050, ): """Get the conditioning latents for the GPT model from the given audio. Args: audio_path (str or List[str]): Path to reference audio file(s). max_ref_length (int): Maximum length of each reference audio in seconds. Defaults to 30. gpt_cond_len (int): Length of the audio used for gpt latents. Defaults to 6. gpt_cond_chunk_len (int): Chunk length used for gpt latents. It must be <= gpt_conf_len. Defaults to 6. librosa_trim_db (int, optional): Trim the audio using this value. If None, not trimming. Defaults to None. sound_norm_refs (bool, optional): Whether to normalize the audio. Defaults to False. load_sr (int, optional): Sample rate to load the audio. Defaults to 24000. """ # deal with multiples references if not isinstance(audio_path, list): audio_paths = [audio_path] else: audio_paths = audio_path speaker_embeddings = [] audios = [] speaker_embedding = None for file_path in audio_paths: audio = load_audio(file_path, load_sr) audio = audio[:, : load_sr * max_ref_length].to(self.device) if sound_norm_refs: audio = (audio / torch.abs(audio).max()) * 0.75 if librosa_trim_db is not None: audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0] # compute latents for the decoder speaker_embedding = self.get_speaker_embedding(audio, load_sr) speaker_embeddings.append(speaker_embedding) audios.append(audio) # merge all the audios and compute the latents for the gpt full_audio = torch.cat(audios, dim=-1) gpt_cond_latents = self.get_gpt_cond_latents( full_audio, load_sr, length=gpt_cond_len, chunk_length=gpt_cond_chunk_len ) # [1, 1024, T] if speaker_embeddings: speaker_embedding = torch.stack(speaker_embeddings) speaker_embedding = speaker_embedding.mean(dim=0) return gpt_cond_latents, speaker_embedding def synthesize(self, text, config, speaker_wav, language, speaker_id=None, **kwargs): """Synthesize speech with the given input text. Args: text (str): Input text. config (XttsConfig): Config with inference parameters. speaker_wav (list): List of paths to the speaker audio files to be used for cloning. language (str): Language ID of the speaker. **kwargs: Inference settings. See `inference()`. Returns: A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference, `text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents` as latents used at inference. """ assert ( "zh-cn" if language == "zh" else language in self.config.languages ), f" ❗ Language {language} is not supported. Supported languages are {self.config.languages}" # Use generally found best tuning knobs for generation. settings = { "temperature": config.temperature, "length_penalty": config.length_penalty, "repetition_penalty": config.repetition_penalty, "top_k": config.top_k, "top_p": config.top_p, } settings.update(kwargs) # allow overriding of preset settings with kwargs if speaker_id is not None: gpt_cond_latent, speaker_embedding = self.speaker_manager.speakers[speaker_id].values() return self.inference(text, language, gpt_cond_latent, speaker_embedding, **settings) settings.update({ "gpt_cond_len": config.gpt_cond_len, "gpt_cond_chunk_len": config.gpt_cond_chunk_len, "max_ref_len": config.max_ref_len, "sound_norm_refs": config.sound_norm_refs, }) return self.full_inference(text, speaker_wav, language, **settings) @torch.inference_mode() def full_inference( self, text, ref_audio_path, language, # GPT inference temperature=0.75, length_penalty=1.0, repetition_penalty=10.0, top_k=50, top_p=0.85, do_sample=True, # Cloning gpt_cond_len=30, gpt_cond_chunk_len=6, max_ref_len=10, sound_norm_refs=False, **hf_generate_kwargs, ): """ This function produces an audio clip of the given text being spoken with the given reference voice. Args: text: (str) Text to be spoken. ref_audio_path: (str) Path to a reference audio file to be used for cloning. This audio file should be >3 seconds long. language: (str) Language of the voice to be generated. temperature: (float) The softmax temperature of the autoregressive model. Defaults to 0.65. length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. Defaults to 1.0. repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence of long silences or "uhhhhhhs", etc. Defaults to 2.0. top_k: (int) K value used in top-k sampling. [0,inf]. Lower values mean the decoder produces more "likely" (aka boring) outputs. Defaults to 50. top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. Defaults to 0.8. gpt_cond_len: (int) Length of the audio used for cloning. If audio is shorter, then audio length is used else the first `gpt_cond_len` secs is used. Defaults to 30 seconds. gpt_cond_chunk_len: (int) Chunk length used for cloning. It must be <= `gpt_cond_len`. If gpt_cond_len == gpt_cond_chunk_len, no chunking. Defaults to 6 seconds. hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation here: https://huggingface.co/docs/transformers/internal/generation_utils Returns: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. Sample rate is 24kHz. """ (gpt_cond_latent, speaker_embedding) = self.get_conditioning_latents( audio_path=ref_audio_path, gpt_cond_len=gpt_cond_len, gpt_cond_chunk_len=gpt_cond_chunk_len, max_ref_length=max_ref_len, sound_norm_refs=sound_norm_refs, ) return self.inference( text, language, gpt_cond_latent, speaker_embedding, temperature=temperature, length_penalty=length_penalty, repetition_penalty=repetition_penalty, top_k=top_k, top_p=top_p, do_sample=do_sample, **hf_generate_kwargs, ) @torch.inference_mode() def inference( self, text, language, gpt_cond_latent, speaker_embedding, # GPT inference temperature=0.75, length_penalty=1.0, repetition_penalty=10.0, top_k=50, top_p=0.85, do_sample=True, num_beams=1, speed=1.0, enable_text_splitting=False, **hf_generate_kwargs, ): language = language.split("-")[0] # remove the country code length_scale = 1.0 / max(speed, 0.05) gpt_cond_latent = gpt_cond_latent.to(self.device) speaker_embedding = speaker_embedding.to(self.device) if enable_text_splitting: text = split_sentence(text, language, self.tokenizer.char_limits[language]) else: text = [text] wavs = [] gpt_latents_list = [] for sent in text: sent = sent.strip().lower() text_tokens = torch.IntTensor(self.tokenizer.encode(sent, lang=language)).unsqueeze(0).to(self.device) assert ( text_tokens.shape[-1] < self.args.gpt_max_text_tokens ), " ❗ XTTS can only generate text with a maximum of 400 tokens." with torch.no_grad(): gpt_codes = self.gpt.generate( cond_latents=gpt_cond_latent, text_inputs=text_tokens, input_tokens=None, do_sample=do_sample, top_p=top_p, top_k=top_k, temperature=temperature, num_return_sequences=self.gpt_batch_size, num_beams=num_beams, length_penalty=length_penalty, repetition_penalty=repetition_penalty, output_attentions=False, **hf_generate_kwargs, ) expected_output_len = torch.tensor( [gpt_codes.shape[-1] * self.gpt.code_stride_len], device=text_tokens.device ) text_len = torch.tensor([text_tokens.shape[-1]], device=self.device) gpt_latents = self.gpt( text_tokens, text_len, gpt_codes, expected_output_len, cond_latents=gpt_cond_latent, return_attentions=False, return_latent=True, ) if length_scale != 1.0: gpt_latents = F.interpolate( gpt_latents.transpose(1, 2), scale_factor=length_scale, mode="linear" ).transpose(1, 2) gpt_latents_list.append(gpt_latents.cpu()) wavs.append(self.hifigan_decoder(gpt_latents, g=speaker_embedding).cpu().squeeze()) return { "wav": torch.cat(wavs, dim=0).numpy(), "gpt_latents": torch.cat(gpt_latents_list, dim=1).numpy(), "speaker_embedding": speaker_embedding, } def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len): """Handle chunk formatting in streaming mode""" wav_chunk = wav_gen[:-overlap_len] if wav_gen_prev is not None: wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) : -overlap_len] if wav_overlap is not None: # cross fade the overlap section if overlap_len > len(wav_chunk): # wav_chunk is smaller than overlap_len, pass on last wav_gen if wav_gen_prev is not None: wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) :] else: # not expecting will hit here as problem happens on last chunk wav_chunk = wav_gen[-overlap_len:] return wav_chunk, wav_gen, None else: crossfade_wav = wav_chunk[:overlap_len] crossfade_wav = crossfade_wav * torch.linspace(0.0, 1.0, overlap_len).to(crossfade_wav.device) wav_chunk[:overlap_len] = wav_overlap * torch.linspace(1.0, 0.0, overlap_len).to(wav_overlap.device) wav_chunk[:overlap_len] += crossfade_wav wav_overlap = wav_gen[-overlap_len:] wav_gen_prev = wav_gen return wav_chunk, wav_gen_prev, wav_overlap @torch.inference_mode() def inference_stream( self, text, language, gpt_cond_latent, speaker_embedding, # Streaming stream_chunk_size=20, overlap_wav_len=1024, # GPT inference temperature=0.75, length_penalty=1.0, repetition_penalty=10.0, top_k=50, top_p=0.85, do_sample=True, speed=1.0, enable_text_splitting=False, **hf_generate_kwargs, ): language = language.split("-")[0] # remove the country code length_scale = 1.0 / max(speed, 0.05) gpt_cond_latent = gpt_cond_latent.to(self.device) speaker_embedding = speaker_embedding.to(self.device) if enable_text_splitting: text = split_sentence(text, language, self.tokenizer.char_limits[language]) else: text = [text] for sent in text: sent = sent.strip().lower() text_tokens = torch.IntTensor(self.tokenizer.encode(sent, lang=language)).unsqueeze(0).to(self.device) assert ( text_tokens.shape[-1] < self.args.gpt_max_text_tokens ), " ❗ XTTS can only generate text with a maximum of 400 tokens." fake_inputs = self.gpt.compute_embeddings( gpt_cond_latent.to(self.device), text_tokens, ) gpt_generator = self.gpt.get_generator( fake_inputs=fake_inputs, top_k=top_k, top_p=top_p, temperature=temperature, do_sample=do_sample, num_beams=1, num_return_sequences=1, length_penalty=float(length_penalty), repetition_penalty=float(repetition_penalty), output_attentions=False, output_hidden_states=True, **hf_generate_kwargs, ) last_tokens = [] all_latents = [] wav_gen_prev = None wav_overlap = None is_end = False while not is_end: try: x, latent = next(gpt_generator) last_tokens += [x] all_latents += [latent] except StopIteration: is_end = True if is_end or (stream_chunk_size > 0 and len(last_tokens) >= stream_chunk_size): gpt_latents = torch.cat(all_latents, dim=0)[None, :] if length_scale != 1.0: gpt_latents = F.interpolate( gpt_latents.transpose(1, 2), scale_factor=length_scale, mode="linear" ).transpose(1, 2) wav_gen = self.hifigan_decoder(gpt_latents, g=speaker_embedding.to(self.device)) wav_chunk, wav_gen_prev, wav_overlap = self.handle_chunks( wav_gen.squeeze(), wav_gen_prev, wav_overlap, overlap_wav_len ) last_tokens = [] yield wav_chunk def forward(self): raise NotImplementedError( "XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training" ) def eval_step(self): raise NotImplementedError( "XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training" ) @staticmethod def init_from_config(config: "XttsConfig", **kwargs): # pylint: disable=unused-argument return Xtts(config) def eval(self): # pylint: disable=redefined-builtin """Sets the model to evaluation mode. Overrides the default eval() method to also set the GPT model to eval mode.""" self.gpt.init_gpt_for_inference() super().eval() def get_compatible_checkpoint_state_dict(self, model_path): checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"] # remove xtts gpt trainer extra keys ignore_keys = ["torch_mel_spectrogram_style_encoder", "torch_mel_spectrogram_dvae", "dvae"] for key in list(checkpoint.keys()): # check if it is from the coqui Trainer if so convert it if key.startswith("xtts."): new_key = key.replace("xtts.", "") checkpoint[new_key] = checkpoint[key] del checkpoint[key] key = new_key # remove unused keys if key.split(".")[0] in ignore_keys: del checkpoint[key] return checkpoint def load_checkpoint( self, config, checkpoint_dir=None, checkpoint_path=None, vocab_path=None, eval=True, strict=True, use_deepspeed=False, speaker_file_path=None, ): """ Loads a checkpoint from disk and initializes the model's state and tokenizer. Args: config (dict): The configuration dictionary for the model. checkpoint_dir (str, optional): The directory where the checkpoint is stored. Defaults to None. checkpoint_path (str, optional): The path to the checkpoint file. Defaults to None. vocab_path (str, optional): The path to the vocabulary file. Defaults to None. eval (bool, optional): Whether to set the model to evaluation mode. Defaults to True. strict (bool, optional): Whether to strictly enforce that the keys in the checkpoint match the keys in the model. Defaults to True. Returns: None """ model_path = checkpoint_path or os.path.join(checkpoint_dir, "model.pth") vocab_path = vocab_path or os.path.join(checkpoint_dir, "vocab.json") if speaker_file_path is None and checkpoint_dir is not None: speaker_file_path = os.path.join(checkpoint_dir, "speakers_xtts.pth") self.language_manager = LanguageManager(config) self.speaker_manager = None if speaker_file_path is not None and os.path.exists(speaker_file_path): self.speaker_manager = SpeakerManager(speaker_file_path) if os.path.exists(vocab_path): self.tokenizer = VoiceBpeTokenizer(vocab_file=vocab_path) self.init_models() checkpoint = self.get_compatible_checkpoint_state_dict(model_path) # deal with v1 and v1.1. V1 has the init_gpt_for_inference keys, v1.1 do not try: self.load_state_dict(checkpoint, strict=strict) except: if eval: self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache) self.load_state_dict(checkpoint, strict=strict) if eval: self.hifigan_decoder.eval() self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache, use_deepspeed=use_deepspeed) self.gpt.eval() def train_step(self): raise NotImplementedError( "XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training" )