|
export const MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"] as const; |
|
|
|
export type Modality = (typeof MODALITIES)[number]; |
|
|
|
export const MODALITY_LABELS = { |
|
multimodal: "Multimodal", |
|
nlp: "Natural Language Processing", |
|
audio: "Audio", |
|
cv: "Computer Vision", |
|
rl: "Reinforcement Learning", |
|
tabular: "Tabular", |
|
other: "Other", |
|
} satisfies Record<Modality, string>; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
export interface SubTask { |
|
|
|
|
|
|
|
type: string; |
|
|
|
|
|
|
|
name: string; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
export interface PipelineData { |
|
|
|
|
|
|
|
name: string; |
|
subtasks?: SubTask[]; |
|
modality: Modality; |
|
|
|
|
|
|
|
color: "blue" | "green" | "indigo" | "orange" | "red" | "yellow"; |
|
|
|
|
|
|
|
hideInModels?: boolean; |
|
|
|
|
|
|
|
hideInDatasets?: boolean; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
export const PIPELINE_DATA = { |
|
"text-classification": { |
|
name: "Text Classification", |
|
subtasks: [ |
|
{ |
|
type: "acceptability-classification", |
|
name: "Acceptability Classification", |
|
}, |
|
{ |
|
type: "entity-linking-classification", |
|
name: "Entity Linking Classification", |
|
}, |
|
{ |
|
type: "fact-checking", |
|
name: "Fact Checking", |
|
}, |
|
{ |
|
type: "intent-classification", |
|
name: "Intent Classification", |
|
}, |
|
{ |
|
type: "language-identification", |
|
name: "Language Identification", |
|
}, |
|
{ |
|
type: "multi-class-classification", |
|
name: "Multi Class Classification", |
|
}, |
|
{ |
|
type: "multi-label-classification", |
|
name: "Multi Label Classification", |
|
}, |
|
{ |
|
type: "multi-input-text-classification", |
|
name: "Multi-input Text Classification", |
|
}, |
|
{ |
|
type: "natural-language-inference", |
|
name: "Natural Language Inference", |
|
}, |
|
{ |
|
type: "semantic-similarity-classification", |
|
name: "Semantic Similarity Classification", |
|
}, |
|
{ |
|
type: "sentiment-classification", |
|
name: "Sentiment Classification", |
|
}, |
|
{ |
|
type: "topic-classification", |
|
name: "Topic Classification", |
|
}, |
|
{ |
|
type: "semantic-similarity-scoring", |
|
name: "Semantic Similarity Scoring", |
|
}, |
|
{ |
|
type: "sentiment-scoring", |
|
name: "Sentiment Scoring", |
|
}, |
|
{ |
|
type: "sentiment-analysis", |
|
name: "Sentiment Analysis", |
|
}, |
|
{ |
|
type: "hate-speech-detection", |
|
name: "Hate Speech Detection", |
|
}, |
|
{ |
|
type: "text-scoring", |
|
name: "Text Scoring", |
|
}, |
|
], |
|
modality: "nlp", |
|
color: "orange", |
|
}, |
|
"token-classification": { |
|
name: "Token Classification", |
|
subtasks: [ |
|
{ |
|
type: "named-entity-recognition", |
|
name: "Named Entity Recognition", |
|
}, |
|
{ |
|
type: "part-of-speech", |
|
name: "Part of Speech", |
|
}, |
|
{ |
|
type: "parsing", |
|
name: "Parsing", |
|
}, |
|
{ |
|
type: "lemmatization", |
|
name: "Lemmatization", |
|
}, |
|
{ |
|
type: "word-sense-disambiguation", |
|
name: "Word Sense Disambiguation", |
|
}, |
|
{ |
|
type: "coreference-resolution", |
|
name: "Coreference-resolution", |
|
}, |
|
], |
|
modality: "nlp", |
|
color: "blue", |
|
}, |
|
"table-question-answering": { |
|
name: "Table Question Answering", |
|
modality: "nlp", |
|
color: "green", |
|
}, |
|
"question-answering": { |
|
name: "Question Answering", |
|
subtasks: [ |
|
{ |
|
type: "extractive-qa", |
|
name: "Extractive QA", |
|
}, |
|
{ |
|
type: "open-domain-qa", |
|
name: "Open Domain QA", |
|
}, |
|
{ |
|
type: "closed-domain-qa", |
|
name: "Closed Domain QA", |
|
}, |
|
], |
|
modality: "nlp", |
|
color: "blue", |
|
}, |
|
"zero-shot-classification": { |
|
name: "Zero-Shot Classification", |
|
modality: "nlp", |
|
color: "yellow", |
|
}, |
|
translation: { |
|
name: "Translation", |
|
modality: "nlp", |
|
color: "green", |
|
}, |
|
summarization: { |
|
name: "Summarization", |
|
subtasks: [ |
|
{ |
|
type: "news-articles-summarization", |
|
name: "News Articles Summarization", |
|
}, |
|
{ |
|
type: "news-articles-headline-generation", |
|
name: "News Articles Headline Generation", |
|
}, |
|
], |
|
modality: "nlp", |
|
color: "indigo", |
|
}, |
|
"feature-extraction": { |
|
name: "Feature Extraction", |
|
modality: "nlp", |
|
color: "red", |
|
}, |
|
"text-generation": { |
|
name: "Text Generation", |
|
subtasks: [ |
|
{ |
|
type: "dialogue-modeling", |
|
name: "Dialogue Modeling", |
|
}, |
|
{ |
|
type: "dialogue-generation", |
|
name: "Dialogue Generation", |
|
}, |
|
{ |
|
type: "conversational", |
|
name: "Conversational", |
|
}, |
|
{ |
|
type: "language-modeling", |
|
name: "Language Modeling", |
|
}, |
|
], |
|
modality: "nlp", |
|
color: "indigo", |
|
}, |
|
"text2text-generation": { |
|
name: "Text2Text Generation", |
|
subtasks: [ |
|
{ |
|
type: "text-simplification", |
|
name: "Text simplification", |
|
}, |
|
{ |
|
type: "explanation-generation", |
|
name: "Explanation Generation", |
|
}, |
|
{ |
|
type: "abstractive-qa", |
|
name: "Abstractive QA", |
|
}, |
|
{ |
|
type: "open-domain-abstractive-qa", |
|
name: "Open Domain Abstractive QA", |
|
}, |
|
{ |
|
type: "closed-domain-qa", |
|
name: "Closed Domain QA", |
|
}, |
|
{ |
|
type: "open-book-qa", |
|
name: "Open Book QA", |
|
}, |
|
{ |
|
type: "closed-book-qa", |
|
name: "Closed Book QA", |
|
}, |
|
], |
|
modality: "nlp", |
|
color: "indigo", |
|
}, |
|
"fill-mask": { |
|
name: "Fill-Mask", |
|
subtasks: [ |
|
{ |
|
type: "slot-filling", |
|
name: "Slot Filling", |
|
}, |
|
{ |
|
type: "masked-language-modeling", |
|
name: "Masked Language Modeling", |
|
}, |
|
], |
|
modality: "nlp", |
|
color: "red", |
|
}, |
|
"sentence-similarity": { |
|
name: "Sentence Similarity", |
|
modality: "nlp", |
|
color: "yellow", |
|
}, |
|
"text-to-speech": { |
|
name: "Text-to-Speech", |
|
modality: "audio", |
|
color: "yellow", |
|
}, |
|
"text-to-audio": { |
|
name: "Text-to-Audio", |
|
modality: "audio", |
|
color: "yellow", |
|
}, |
|
"automatic-speech-recognition": { |
|
name: "Automatic Speech Recognition", |
|
modality: "audio", |
|
color: "yellow", |
|
}, |
|
"audio-to-audio": { |
|
name: "Audio-to-Audio", |
|
modality: "audio", |
|
color: "blue", |
|
}, |
|
"audio-classification": { |
|
name: "Audio Classification", |
|
subtasks: [ |
|
{ |
|
type: "keyword-spotting", |
|
name: "Keyword Spotting", |
|
}, |
|
{ |
|
type: "speaker-identification", |
|
name: "Speaker Identification", |
|
}, |
|
{ |
|
type: "audio-intent-classification", |
|
name: "Audio Intent Classification", |
|
}, |
|
{ |
|
type: "audio-emotion-recognition", |
|
name: "Audio Emotion Recognition", |
|
}, |
|
{ |
|
type: "audio-language-identification", |
|
name: "Audio Language Identification", |
|
}, |
|
], |
|
modality: "audio", |
|
color: "green", |
|
}, |
|
"voice-activity-detection": { |
|
name: "Voice Activity Detection", |
|
modality: "audio", |
|
color: "red", |
|
}, |
|
"depth-estimation": { |
|
name: "Depth Estimation", |
|
modality: "cv", |
|
color: "yellow", |
|
}, |
|
"image-classification": { |
|
name: "Image Classification", |
|
subtasks: [ |
|
{ |
|
type: "multi-label-image-classification", |
|
name: "Multi Label Image Classification", |
|
}, |
|
{ |
|
type: "multi-class-image-classification", |
|
name: "Multi Class Image Classification", |
|
}, |
|
], |
|
modality: "cv", |
|
color: "blue", |
|
}, |
|
"object-detection": { |
|
name: "Object Detection", |
|
subtasks: [ |
|
{ |
|
type: "face-detection", |
|
name: "Face Detection", |
|
}, |
|
{ |
|
type: "vehicle-detection", |
|
name: "Vehicle Detection", |
|
}, |
|
], |
|
modality: "cv", |
|
color: "yellow", |
|
}, |
|
"image-segmentation": { |
|
name: "Image Segmentation", |
|
subtasks: [ |
|
{ |
|
type: "instance-segmentation", |
|
name: "Instance Segmentation", |
|
}, |
|
{ |
|
type: "semantic-segmentation", |
|
name: "Semantic Segmentation", |
|
}, |
|
{ |
|
type: "panoptic-segmentation", |
|
name: "Panoptic Segmentation", |
|
}, |
|
], |
|
modality: "cv", |
|
color: "green", |
|
}, |
|
"text-to-image": { |
|
name: "Text-to-Image", |
|
modality: "cv", |
|
color: "yellow", |
|
}, |
|
"image-to-text": { |
|
name: "Image-to-Text", |
|
subtasks: [ |
|
{ |
|
type: "image-captioning", |
|
name: "Image Captioning", |
|
}, |
|
], |
|
modality: "cv", |
|
color: "red", |
|
}, |
|
"image-to-image": { |
|
name: "Image-to-Image", |
|
subtasks: [ |
|
{ |
|
type: "image-inpainting", |
|
name: "Image Inpainting", |
|
}, |
|
{ |
|
type: "image-colorization", |
|
name: "Image Colorization", |
|
}, |
|
{ |
|
type: "super-resolution", |
|
name: "Super Resolution", |
|
}, |
|
], |
|
modality: "cv", |
|
color: "indigo", |
|
}, |
|
"image-to-video": { |
|
name: "Image-to-Video", |
|
modality: "cv", |
|
color: "indigo", |
|
}, |
|
"unconditional-image-generation": { |
|
name: "Unconditional Image Generation", |
|
modality: "cv", |
|
color: "green", |
|
}, |
|
"video-classification": { |
|
name: "Video Classification", |
|
modality: "cv", |
|
color: "blue", |
|
}, |
|
"reinforcement-learning": { |
|
name: "Reinforcement Learning", |
|
modality: "rl", |
|
color: "red", |
|
}, |
|
robotics: { |
|
name: "Robotics", |
|
modality: "rl", |
|
subtasks: [ |
|
{ |
|
type: "grasping", |
|
name: "Grasping", |
|
}, |
|
{ |
|
type: "task-planning", |
|
name: "Task Planning", |
|
}, |
|
], |
|
color: "blue", |
|
}, |
|
"tabular-classification": { |
|
name: "Tabular Classification", |
|
modality: "tabular", |
|
subtasks: [ |
|
{ |
|
type: "tabular-multi-class-classification", |
|
name: "Tabular Multi Class Classification", |
|
}, |
|
{ |
|
type: "tabular-multi-label-classification", |
|
name: "Tabular Multi Label Classification", |
|
}, |
|
], |
|
color: "blue", |
|
}, |
|
"tabular-regression": { |
|
name: "Tabular Regression", |
|
modality: "tabular", |
|
subtasks: [ |
|
{ |
|
type: "tabular-single-column-regression", |
|
name: "Tabular Single Column Regression", |
|
}, |
|
], |
|
color: "blue", |
|
}, |
|
"tabular-to-text": { |
|
name: "Tabular to Text", |
|
modality: "tabular", |
|
subtasks: [ |
|
{ |
|
type: "rdf-to-text", |
|
name: "RDF to text", |
|
}, |
|
], |
|
color: "blue", |
|
hideInModels: true, |
|
}, |
|
"table-to-text": { |
|
name: "Table to Text", |
|
modality: "nlp", |
|
color: "blue", |
|
hideInModels: true, |
|
}, |
|
"multiple-choice": { |
|
name: "Multiple Choice", |
|
subtasks: [ |
|
{ |
|
type: "multiple-choice-qa", |
|
name: "Multiple Choice QA", |
|
}, |
|
{ |
|
type: "multiple-choice-coreference-resolution", |
|
name: "Multiple Choice Coreference Resolution", |
|
}, |
|
], |
|
modality: "nlp", |
|
color: "blue", |
|
hideInModels: true, |
|
}, |
|
"text-retrieval": { |
|
name: "Text Retrieval", |
|
subtasks: [ |
|
{ |
|
type: "document-retrieval", |
|
name: "Document Retrieval", |
|
}, |
|
{ |
|
type: "utterance-retrieval", |
|
name: "Utterance Retrieval", |
|
}, |
|
{ |
|
type: "entity-linking-retrieval", |
|
name: "Entity Linking Retrieval", |
|
}, |
|
{ |
|
type: "fact-checking-retrieval", |
|
name: "Fact Checking Retrieval", |
|
}, |
|
], |
|
modality: "nlp", |
|
color: "indigo", |
|
hideInModels: true, |
|
}, |
|
"time-series-forecasting": { |
|
name: "Time Series Forecasting", |
|
modality: "tabular", |
|
subtasks: [ |
|
{ |
|
type: "univariate-time-series-forecasting", |
|
name: "Univariate Time Series Forecasting", |
|
}, |
|
{ |
|
type: "multivariate-time-series-forecasting", |
|
name: "Multivariate Time Series Forecasting", |
|
}, |
|
], |
|
color: "blue", |
|
hideInModels: true, |
|
}, |
|
"text-to-video": { |
|
name: "Text-to-Video", |
|
modality: "cv", |
|
color: "green", |
|
}, |
|
"image-text-to-text": { |
|
name: "Image-Text-to-Text", |
|
modality: "multimodal", |
|
color: "red", |
|
hideInDatasets: true, |
|
}, |
|
"visual-question-answering": { |
|
name: "Visual Question Answering", |
|
subtasks: [ |
|
{ |
|
type: "visual-question-answering", |
|
name: "Visual Question Answering", |
|
}, |
|
], |
|
modality: "multimodal", |
|
color: "red", |
|
}, |
|
"document-question-answering": { |
|
name: "Document Question Answering", |
|
subtasks: [ |
|
{ |
|
type: "document-question-answering", |
|
name: "Document Question Answering", |
|
}, |
|
], |
|
modality: "multimodal", |
|
color: "blue", |
|
hideInDatasets: true, |
|
}, |
|
"zero-shot-image-classification": { |
|
name: "Zero-Shot Image Classification", |
|
modality: "cv", |
|
color: "yellow", |
|
}, |
|
"graph-ml": { |
|
name: "Graph Machine Learning", |
|
modality: "other", |
|
color: "green", |
|
}, |
|
"mask-generation": { |
|
name: "Mask Generation", |
|
modality: "cv", |
|
color: "indigo", |
|
}, |
|
"zero-shot-object-detection": { |
|
name: "Zero-Shot Object Detection", |
|
modality: "cv", |
|
color: "yellow", |
|
}, |
|
"text-to-3d": { |
|
name: "Text-to-3D", |
|
modality: "cv", |
|
color: "yellow", |
|
}, |
|
"image-to-3d": { |
|
name: "Image-to-3D", |
|
modality: "cv", |
|
color: "green", |
|
}, |
|
"image-feature-extraction": { |
|
name: "Image Feature Extraction", |
|
modality: "cv", |
|
color: "indigo", |
|
}, |
|
other: { |
|
name: "Other", |
|
modality: "other", |
|
color: "blue", |
|
hideInModels: true, |
|
hideInDatasets: true, |
|
}, |
|
} satisfies Record<string, PipelineData>; |
|
|
|
export type PipelineType = keyof typeof PIPELINE_DATA; |
|
|
|
export type WidgetType = PipelineType | "conversational"; |
|
|
|
export const PIPELINE_TYPES = Object.keys(PIPELINE_DATA) as PipelineType[]; |
|
|
|
export const SUBTASK_TYPES = Object.values(PIPELINE_DATA) |
|
.flatMap((data) => ("subtasks" in data ? data.subtasks : [])) |
|
.map((s) => s.type); |
|
|
|
export const PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES); |
|
|