dvruette commited on
Commit
227c382
·
verified ·
1 Parent(s): d858663

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 50257
3
+ }
config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DIT"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_dit.DITConfig",
8
+ "AutoModelForMaskedLM": "modeling_dit.DIT"
9
+ },
10
+ "hidden_size": 1024,
11
+ "max_seq_len": 512,
12
+ "model_type": "dit",
13
+ "num_attention_heads": 16,
14
+ "num_hidden_layers": 24,
15
+ "timestep_cond_dim": 128,
16
+ "torch_dtype": "float32",
17
+ "transformers_version": "4.49.0",
18
+ "vocab_size": 50258
19
+ }
configuration_dit.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class DITConfig(PretrainedConfig):
5
+ model_type = "dit"
6
+
7
+ def __init__(
8
+ self,
9
+ vocab_size: int = 50258,
10
+ max_seq_len: int = 1024,
11
+ hidden_size: int = 768,
12
+ timestep_cond_dim: int = 128,
13
+ num_hidden_layers: int = 12,
14
+ num_attention_heads: int = 12,
15
+ attention_dropout: float = 0.0,
16
+ **kwargs
17
+ ):
18
+ super().__init__(**kwargs)
19
+ self.vocab_size = vocab_size
20
+ self.max_seq_len = max_seq_len
21
+ self.hidden_size = hidden_size
22
+ self.timestep_cond_dim = timestep_cond_dim
23
+ self.num_hidden_layers = num_hidden_layers
24
+ self.num_attention_heads = num_attention_heads
25
+ self.attention_dropout = attention_dropout
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50ba67203027b21c39ebb9aeb5e32f92bfa77d1c1b81a5b0e951b3eb1abe8a8e
3
+ size 1698719104
modeling_dit.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from: https://github.com/kuleshov-group/mdlm/blob/master/models/dit.py
2
+
3
+ import math
4
+ import typing
5
+
6
+ import omegaconf
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ from transformers import PreTrainedModel
11
+ from einops import rearrange
12
+
13
+ from .configuration_dit import DITConfig
14
+
15
+ try:
16
+ import flash_attn
17
+ import flash_attn.layers.rotary
18
+ has_flash_attn = True
19
+ except ImportError:
20
+ torch.backends.cuda.enable_flash_sdp(enabled=True)
21
+ has_flash_attn = False
22
+
23
+ # Flags required to enable jit fusion kernels
24
+ torch._C._jit_set_profiling_mode(False)
25
+ torch._C._jit_set_profiling_executor(False)
26
+ torch._C._jit_override_can_fuse_on_cpu(True)
27
+ torch._C._jit_override_can_fuse_on_gpu(True)
28
+
29
+
30
+ def bias_dropout_add_scale(
31
+ x: torch.Tensor,
32
+ bias: typing.Optional[torch.Tensor],
33
+ scale: torch.Tensor,
34
+ residual: typing.Optional[torch.Tensor],
35
+ prob: float,
36
+ training: bool) -> torch.Tensor:
37
+ if bias is not None:
38
+ out = scale * F.dropout(x + bias, p=prob, training=training)
39
+ else:
40
+ out = scale * F.dropout(x, p=prob, training=training)
41
+
42
+ if residual is not None:
43
+ out = residual + out
44
+ return out
45
+
46
+
47
+ def get_bias_dropout_add_scale(training):
48
+ def _bias_dropout_add(x, bias, scale, residual, prob):
49
+ return bias_dropout_add_scale(
50
+ x, bias, scale, residual, prob, training)
51
+
52
+ return _bias_dropout_add
53
+
54
+
55
+ # function overload
56
+ def modulate(x: torch.Tensor,
57
+ shift: torch.Tensor,
58
+ scale: torch.Tensor) -> torch.Tensor:
59
+ return x * (1 + scale) + shift
60
+
61
+
62
+ # @torch.jit.script
63
+ def bias_dropout_add_scale_fused_train(
64
+ x: torch.Tensor,
65
+ bias: typing.Optional[torch.Tensor],
66
+ scale: torch.Tensor,
67
+ residual: typing.Optional[torch.Tensor],
68
+ prob: float) -> torch.Tensor:
69
+ return bias_dropout_add_scale(
70
+ x, bias, scale, residual, prob, True)
71
+
72
+
73
+ # @torch.jit.script
74
+ def bias_dropout_add_scale_fused_inference(
75
+ x: torch.Tensor,
76
+ bias: typing.Optional[torch.Tensor],
77
+ scale: torch.Tensor,
78
+ residual: typing.Optional[torch.Tensor],
79
+ prob: float) -> torch.Tensor:
80
+ return bias_dropout_add_scale(
81
+ x, bias, scale, residual, prob, False)
82
+
83
+
84
+ # @torch.jit.script
85
+ def modulate_fused(x: torch.Tensor,
86
+ shift: torch.Tensor,
87
+ scale: torch.Tensor) -> torch.Tensor:
88
+ return modulate(x, shift, scale)
89
+
90
+
91
+ class Rotary(torch.nn.Module):
92
+ def __init__(self, dim, base=10_000, max_seq_len=512):
93
+ super().__init__()
94
+ self.dim = dim
95
+ self.base = base
96
+ self.max_seq_len = max_seq_len
97
+ self.precompute()
98
+
99
+ def precompute(self):
100
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
101
+ t = torch.arange(self.max_seq_len).type_as(inv_freq)
102
+ freqs = torch.einsum("i,j->ij", t, inv_freq.clone())
103
+ emb = torch.cat((freqs, freqs), dim=-1)
104
+ # dims are: batch, seq_len, qkv, head, dim
105
+ cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
106
+ sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
107
+ # This makes the transformation on v an identity.
108
+ cos_cached[:,:,2,:,:].fill_(1.)
109
+ sin_cached[:,:,2,:,:].fill_(0.)
110
+
111
+ self.register_buffer('cos_cached', cos_cached)
112
+ self.register_buffer('sin_cached', sin_cached)
113
+
114
+ def forward(self, x, seq_dim=1):
115
+ seq_len = x.shape[seq_dim]
116
+ return self.cos_cached[:, :, :seq_len], self.sin_cached[:, :, :seq_len]
117
+
118
+
119
+ def rotate_half(x):
120
+ x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
121
+ return torch.cat((-x2, x1), dim=-1)
122
+
123
+
124
+ def apply_rotary_pos_emb(qkv, cos, sin):
125
+ if has_flash_attn:
126
+ cos = cos[0,:,0,0,:cos.shape[-1]//2]
127
+ sin = sin[0,:,0,0,:sin.shape[-1]//2]
128
+ return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin)
129
+ else:
130
+ return (qkv * cos) + (rotate_half(qkv) * sin)
131
+
132
+
133
+ # function overload
134
+ def modulate(x, shift, scale):
135
+ return x * (1 + scale) + shift
136
+
137
+
138
+ #################################################################################
139
+ # Layers #
140
+ #################################################################################
141
+ class LayerNorm(nn.Module):
142
+ def __init__(self, dim):
143
+ super().__init__()
144
+ self.weight = nn.Parameter(torch.ones([dim]))
145
+ self.dim = dim
146
+ def forward(self, x):
147
+ x = F.layer_norm(x.float(), [self.dim])
148
+ return x * self.weight[None,None,:]
149
+
150
+
151
+ def residual_linear(x, W, x_skip, residual_scale):
152
+ """x_skip + residual_scale * W @ x"""
153
+ dim_out, dim_in = W.shape[0], W.shape[1]
154
+ return torch.addmm(
155
+ x_skip.view(-1, dim_out),
156
+ x.view(-1, dim_in),
157
+ W.T,
158
+ alpha=residual_scale).view(*x.shape[:-1], dim_out)
159
+
160
+
161
+ #################################################################################
162
+ # Embedding Layers for Timesteps and Class Labels #
163
+ #################################################################################
164
+ class TimestepEmbedder(nn.Module):
165
+ """
166
+ Embeds scalar timesteps into vector representations.
167
+ """
168
+ def __init__(self, hidden_size, frequency_embedding_size=256):
169
+ super().__init__()
170
+ self.mlp = nn.Sequential(
171
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
172
+ nn.SiLU(),
173
+ nn.Linear(hidden_size, hidden_size, bias=True))
174
+ self.frequency_embedding_size = frequency_embedding_size
175
+
176
+ @staticmethod
177
+ def timestep_embedding(t, dim, max_period=10000):
178
+ """
179
+ Create sinusoidal timestep embeddings.
180
+ :param t: a 1-D Tensor of N indices, one per batch element.
181
+ These may be fractional.
182
+ :param dim: the dimension of the output.
183
+ :param max_period: controls the minimum frequency of the embeddings.
184
+ :return: an (N, D) Tensor of positional embeddings.
185
+ """
186
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
187
+ half = dim // 2
188
+ freqs = torch.exp(
189
+ - math.log(max_period)
190
+ * torch.arange(start=0, end=half, dtype=torch.float32)
191
+ / half).to(device=t.device)
192
+ args = t[:, None].float() * freqs[None]
193
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
194
+ if dim % 2:
195
+ embedding = torch.cat(
196
+ [embedding,
197
+ torch.zeros_like(embedding[:, :1])], dim=-1)
198
+ return embedding
199
+
200
+ def forward(self, t):
201
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
202
+ t_emb = self.mlp(t_freq)
203
+ return t_emb
204
+
205
+
206
+ class LabelEmbedder(nn.Module):
207
+ """Embeds class labels into vector representations.
208
+
209
+ Also handles label dropout for classifier-free guidance.
210
+ """
211
+ def __init__(self, num_classes, cond_size):
212
+ super().__init__()
213
+ self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
214
+ self.num_classes = num_classes
215
+
216
+ # TODO think of initializing with 0.02 std deviation like in original DiT paper
217
+
218
+ def forward(self, labels):
219
+ embeddings = self.embedding_table(labels)
220
+ return embeddings
221
+
222
+
223
+ #################################################################################
224
+ # Core Model #
225
+ #################################################################################
226
+
227
+
228
+ class DDiTBlock(nn.Module):
229
+ def __init__(self, dim, n_heads, cond_dim, mlp_ratio=4, dropout=0.1):
230
+ super().__init__()
231
+ self.n_heads = n_heads
232
+ self.dim = dim
233
+ self.cond_dim = cond_dim
234
+ self.mlp_ratio = mlp_ratio
235
+
236
+ self.norm1 = LayerNorm(dim)
237
+ self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
238
+ self.attn_out = nn.Linear(dim, dim, bias=False)
239
+ self.dropout1 = nn.Dropout(dropout)
240
+
241
+ self.norm2 = LayerNorm(dim)
242
+ self.mlp = nn.Sequential(
243
+ nn.Linear(dim, mlp_ratio * dim, bias=True),
244
+ nn.GELU(approximate='tanh'),
245
+ nn.Linear(mlp_ratio * dim, dim, bias=True))
246
+ self.dropout2 = nn.Dropout(dropout)
247
+ self.dropout = dropout
248
+
249
+ self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
250
+ self.adaLN_modulation.weight.data.zero_()
251
+ self.adaLN_modulation.bias.data.zero_()
252
+
253
+ def _get_bias_dropout_scale(self):
254
+ if self.training:
255
+ return bias_dropout_add_scale_fused_train
256
+ else:
257
+ return bias_dropout_add_scale_fused_inference
258
+
259
+
260
+ def forward(self, x, rotary_cos_sin, c, seqlens=None):
261
+ batch_size, seq_len = x.shape[0], x.shape[1]
262
+
263
+ bias_dropout_scale_fn = self._get_bias_dropout_scale()
264
+
265
+ (shift_msa, scale_msa, gate_msa, shift_mlp,
266
+ scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
267
+
268
+ # attention operation
269
+ x_skip = x
270
+ x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
271
+
272
+ qkv = self.attn_qkv(x)
273
+ qkv = rearrange(qkv,
274
+ 'b s (three h d) -> b s three h d',
275
+ three=3,
276
+ h=self.n_heads)
277
+ cos, sin = rotary_cos_sin
278
+ qkv = apply_rotary_pos_emb(
279
+ qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
280
+
281
+ if has_flash_attn:
282
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
283
+ if seqlens is None:
284
+ cu_seqlens = torch.arange(
285
+ 0, (batch_size + 1) * seq_len, step=seq_len,
286
+ dtype=torch.int32, device=qkv.device)
287
+ else:
288
+ cu_seqlens = seqlens.cumsum(-1)
289
+ x = flash_attn.flash_attn_interface.flash_attn_varlen_qkvpacked_func(
290
+ qkv, cu_seqlens, seq_len, 0., causal=False)
291
+ x = rearrange(x, '(b s) h d -> b s (h d)', b=batch_size)
292
+ else:
293
+ q, k, v = qkv[:, :, 0].transpose(1, 2), qkv[:, :, 1].transpose(1, 2), qkv[:, :, 2].transpose(1, 2)
294
+ x = F.scaled_dot_product_attention(q, k, v)
295
+
296
+ x = rearrange(x, 'b h s d -> b s (h d)', b=batch_size)
297
+
298
+ x = bias_dropout_scale_fn(self.attn_out(x),
299
+ None,
300
+ gate_msa,
301
+ x_skip,
302
+ self.dropout)
303
+
304
+ # mlp operation
305
+ x = bias_dropout_scale_fn(
306
+ self.mlp(modulate_fused(
307
+ self.norm2(x), shift_mlp, scale_mlp)),
308
+ None, gate_mlp, x, self.dropout)
309
+ return x
310
+
311
+
312
+
313
+ class EmbeddingLayer(nn.Module):
314
+ def __init__(self, dim, vocab_dim):
315
+ super().__init__()
316
+ self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
317
+ torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
318
+
319
+ def forward(self, x):
320
+ return self.embedding[x]
321
+
322
+
323
+ class DDitFinalLayer(nn.Module):
324
+ def __init__(self, hidden_size, out_channels, cond_dim):
325
+ super().__init__()
326
+ self.norm_final = LayerNorm(hidden_size)
327
+ self.linear = nn.Linear(hidden_size, out_channels)
328
+ self.linear.weight.data.zero_()
329
+ self.linear.bias.data.zero_()
330
+
331
+ self.adaLN_modulation = nn.Linear(cond_dim,
332
+ 2 * hidden_size,
333
+ bias=True)
334
+ self.adaLN_modulation.weight.data.zero_()
335
+ self.adaLN_modulation.bias.data.zero_()
336
+
337
+
338
+ def forward(self, x, c):
339
+ shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
340
+ x = modulate_fused(self.norm_final(x), shift, scale)
341
+ x = self.linear(x)
342
+ return x
343
+
344
+
345
+ class DIT(PreTrainedModel):
346
+ config_class = DITConfig
347
+ base_model_prefix = "dit"
348
+
349
+ def __init__(self, config: DITConfig):
350
+ super().__init__(config)
351
+
352
+ self.config = config
353
+ self.vocab_size = config.vocab_size
354
+
355
+ self.vocab_embed = EmbeddingLayer(config.hidden_size, config.vocab_size)
356
+ self.sigma_map = TimestepEmbedder(config.timestep_cond_dim)
357
+ self.rotary_emb = Rotary(
358
+ config.hidden_size // config.num_attention_heads,
359
+ max_seq_len=config.max_seq_len,
360
+ )
361
+
362
+ blocks = []
363
+ for _ in range(config.num_hidden_layers):
364
+ blocks.append(DDiTBlock(config.hidden_size,
365
+ config.num_attention_heads,
366
+ config.timestep_cond_dim,
367
+ dropout=config.attention_dropout))
368
+ self.blocks = nn.ModuleList(blocks)
369
+
370
+ self.output_layer = DDitFinalLayer(
371
+ config.hidden_size,
372
+ config.vocab_size,
373
+ config.timestep_cond_dim)
374
+
375
+ def _get_bias_dropout_scale(self):
376
+ if self.training:
377
+ return bias_dropout_add_scale_fused_train
378
+ else:
379
+ return bias_dropout_add_scale_fused_inference
380
+
381
+ def forward(self, input_ids, timesteps):
382
+ x = self.vocab_embed(input_ids)
383
+ c = F.silu(self.sigma_map(timesteps))
384
+
385
+ rotary_cos_sin = self.rotary_emb(x)
386
+
387
+ for i in range(len(self.blocks)):
388
+ x = self.blocks[i](x, rotary_cos_sin, c, seqlens=None)
389
+ x = self.output_layer(x, c)
390
+
391
+ return x
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "mask_token": {
17
+ "content": "[MASK]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "pad_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": "[MASK]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ }
20
+ },
21
+ "bos_token": "<|endoftext|>",
22
+ "clean_up_tokenization_spaces": false,
23
+ "eos_token": "<|endoftext|>",
24
+ "extra_special_tokens": {},
25
+ "mask_token": "[MASK]",
26
+ "model_max_length": 512,
27
+ "pad_token": "<|endoftext|>",
28
+ "tokenizer_class": "GPT2Tokenizer",
29
+ "unk_token": "<|endoftext|>"
30
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff