dvruette commited on
Commit
ca05702
·
verified ·
1 Parent(s): 52cd700

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - Skylion007/openwebtext
5
+ tags:
6
+ - diffusion
7
+ ---
8
+
9
+ # Generalized Interpolating Discrete Diffusion
10
+
11
+ By Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, Thomas Hofmann
12
+
13
+ <div style="display: flex; gap: 8px;">
14
+ <a href="https://www.arxiv.org/abs/2503.04482"><img alt="arXiv" src="https://img.shields.io/badge/arXiv-2503.04482-d22c2c.svg"></a>
15
+ <a href="https://colab.research.google.com/drive/1Xv4RyZhXHkIpIZeMYahl_4kMthLxKdg_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a>
16
+ <a href="https://github.com/dvruette/gidd"><img alt="GitHub" src="https://img.shields.io/badge/GitHub-GIDD-blue"></a>
17
+ </div>
18
+
19
+ ---
20
+
21
+ ![animation](https://github.com/dvruette/gidd/raw/main/animation.gif)
22
+
23
+ We present Generalized Interpolating Discrete Diffusion (GIDD), a novel framework for training discrete diffusion models.
24
+ GIDD can be seen as a generalization of the popular masked diffusion paradigm (MDM) to any diffusion process that can be written as a linear interpolation between a data distribution and some (time-variable) mixing distribution.
25
+ We demonstrate the flexibility of GIDD by training models on a hybrid diffusion process that combines masking and uniform noise.
26
+ The model therefore is trained to not only "fill in the blanks" (i.e. the masked tokens), but also to consider the correctness of already-filled-in tokens and, if necessary, replace incorrect tokens with more plausible ones.
27
+ We show that GIDD models trained on hybrid noise have better sample quality (generative PPL) than mask-only models, and that they are able to identify and correct their own mistakes in generated samples through a self-correction step.
28
+ This repository contains all training and evaluation code necessary for reproducing the results in the paper.
29
+
30
+
31
+
32
+ ### Pretrained Checkpoints
33
+ Our trained checkpoints are available under the following links. All of them have been trained on 131B tokens from the [OpenWebText](https://huggingface.co/datasets/Skylion007/openwebtext) dataset with the [GPT-2 tokenizer](https://huggingface.co/openai-community/gpt2).
34
+
35
+ | Model | Small (169.6M) | Base (424.5M) |
36
+ |-------|-------|------|
37
+ | GIDD+ (p_u = 0.0) | [dvruette/gidd-small-p_unif-0.0](https://huggingface.co/dvruette/gidd-small-p_unif-0.0) | [dvruette/gidd-base-p_unif-0.0](https://huggingface.co/dvruette/gidd-base-p_unif-0.0) |
38
+ | GIDD+ (p_u = 0.1) | [dvruette/gidd-small-p_unif-0.1](https://huggingface.co/dvruette/gidd-small-p_unif-0.1) | dvruette/gidd-base-p_unif-0.1 |
39
+ | GIDD+ (p_u = 0.2) | [dvruette/gidd-small-p_unif-0.2](https://huggingface.co/dvruette/gidd-small-p_unif-0.2) | [dvruette/gidd-base-p_unif-0.2](https://huggingface.co/dvruette/gidd-base-p_unif-0.2) |
40
+
41
+
42
+ ## Use the Model
43
+
44
+ 1. Install the GIDD repo:
45
+ ```bash
46
+ pip install git+https://github.com/dvruette/gidd
47
+ ```
48
+
49
+ 2. For quickly downloading a trained model and playing around with it, the `GiddPipeline` class is most convenient:
50
+
51
+ ```python
52
+ from gidd import GiddPipeline
53
+
54
+ # Download a pretrained model from HuggingFace
55
+ pipe = GiddPipeline.from_pretrained("dvruette/gidd-base-p_unif-0.1", trust_remote_code=True)
56
+
57
+ # Generate samples
58
+ texts = pipe.generate(num_samples=4, num_inference_steps=128)
59
+
60
+ # Run self-correction step
61
+ corrected_texts = pipe.self_correction(texts, num_inference_steps=128, early_stopping=True, temperature=0.1)
62
+
63
+ print(corrected_texts)
64
+ ```
65
+