File size: 3,216 Bytes
a8a67da 3468043 f64bfc3 3468043 a8a67da 553c2c1 33c5802 ac4b208 7c5343a 939f1c9 f64bfc3 3468043 a8a67da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_keras_callback
model-index:
- name: dwiedarioo/vit-base-patch16-224-in21k-brainmri
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dwiedarioo/vit-base-patch16-224-in21k-brainmri
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2848
- Train Accuracy: 0.9969
- Train Top-3-accuracy: 0.9992
- Validation Loss: 0.3786
- Validation Accuracy: 0.9590
- Validation Top-3-accuracy: 0.9892
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1230, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 2.2199 | 0.4215 | 0.6564 | 1.8634 | 0.5702 | 0.8099 | 0 |
| 1.5448 | 0.6976 | 0.8797 | 1.3110 | 0.7603 | 0.9028 | 1 |
| 1.0494 | 0.8694 | 0.9519 | 0.9507 | 0.8855 | 0.9590 | 2 |
| 0.7408 | 0.9381 | 0.9824 | 0.7499 | 0.9114 | 0.9806 | 3 |
| 0.5428 | 0.9756 | 0.9939 | 0.5831 | 0.9460 | 0.9849 | 4 |
| 0.4169 | 0.9901 | 0.9977 | 0.4895 | 0.9525 | 0.9914 | 5 |
| 0.3371 | 0.9947 | 0.9977 | 0.4194 | 0.9611 | 0.9892 | 6 |
| 0.2848 | 0.9969 | 0.9992 | 0.3786 | 0.9590 | 0.9892 | 7 |
### Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|