Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.17 +/- 0.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e279dd6b603441330f616f6cb27835f4f8054f5f3ac0660ac50b7773a418e174
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ddd083d4dc0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ddd083c8d80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692266209272582520,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4m9kPq0dELsi+Oc+4m9kPq0dELsi+Oc+4m9kPq0dELsi+Oc+KPMDv/Tq5b5XEsA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9GoZvwnEiL4yai6/ifZ3P3o+mr88zLM+3RgDv9CjtD8oLGa/TCqdvYQ3Bb8PjYs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADib2Q+rR0QuyL45z4W0fI+wA/NOp6Jwz7ib2Q+rR0QuyL45z4W0fI+wA/NOp6Jwz7ib2Q+rR0QuyL45z4W0fI+wA/NOp6Jwz4o8wO/9OrlvlcSwD4zzBm/MC/Sv9F3cT+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.22308305 -0.00219903 0.45306498]\n [ 0.22308305 -0.00219903 0.45306498]\n [ 0.22308305 -0.00219903 0.45306498]\n [-0.515429 -0.44905818 0.37513992]]",
|
34 |
+
"desired_goal": "[[-0.5992882 -0.26712063 -0.6813079 ]\n [ 0.9686056 -1.2050316 0.35116756]\n [-0.51209813 1.4112492 -0.8991113 ]\n [-0.07674083 -0.52037835 1.0902423 ]]",
|
35 |
+
"observation": "[[ 2.2308305e-01 -2.1990344e-03 4.5306498e-01 4.7425145e-01\n 1.5644953e-03 3.8190931e-01]\n [ 2.2308305e-01 -2.1990344e-03 4.5306498e-01 4.7425145e-01\n 1.5644953e-03 3.8190931e-01]\n [ 2.2308305e-01 -2.1990344e-03 4.5306498e-01 4.7425145e-01\n 1.5644953e-03 3.8190931e-01]\n [-5.1542902e-01 -4.4905818e-01 3.7513992e-01 -6.0077208e-01\n -1.6420650e+00 9.4323450e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAx5oTPgOSFD5Hiz8+7DCpvSr6lr0mPaQ9SxgjvOygG7s2Wo0+YF09vYW7gjulF3k+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.14414512 0.14508824 0.18705474]\n [-0.08261284 -0.07371934 0.08019476]\n [-0.00995452 -0.0023747 0.27607888]\n [-0.04623163 0.00398964 0.24325426]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8SOJcgQpWqMAWyUSwOMAXSUR0Cs6rSKekHldX2UKGgGR7/RVH4Glhw3aAdLA2gIR0Cs6nkqUeMidX2UKGgGR7/MPwuuieunaAdLA2gIR0Cs6vWjwhGIdX2UKGgGR7/V/tIClrM1aAdLBGgIR0Cs6kocaOxTdX2UKGgGR7/LYwqRU3n7aAdLA2gIR0Cs6ome18b8dX2UKGgGR7/I76pHZsbeaAdLA2gIR0Cs6whf8dgfdX2UKGgGR7/WeDWbwz+FaAdLBGgIR0Cs6s1dHDrJdX2UKGgGR7++2d/axoqTaAdLAmgIR0Cs6ld2xIJ7dX2UKGgGR7/SqVhTfixWaAdLA2gIR0Cs6ptPpIMCdX2UKGgGR7+6UgSvkiljaAdLAmgIR0Cs6mDtXxOMdX2UKGgGR7/Tg5R0lqrSaAdLA2gIR0Cs6xc9nscAdX2UKGgGR7/Tzollbu+iaAdLA2gIR0Cs6tvgWJrMdX2UKGgGR7+4an752yLRaAdLAmgIR0Cs6ueQ2dd3dX2UKGgGR7/Hbu+h4+r3aAdLA2gIR0Cs6nJHy3CsdX2UKGgGR7/Xdmg8KXv6aAdLBGgIR0Cs6rGlImPYdX2UKGgGR7/XIO6NEPUbaAdLBGgIR0Cs6y1Drqt6dX2UKGgGR7+1dkauOjqOaAdLAmgIR0Cs6nvEsJ6ZdX2UKGgGR7/ZKs+3Ytg8aAdLBGgIR0Cs6vqxkd3jdX2UKGgGR7/JiVB2OhkBaAdLA2gIR0Cs6r9u5z5odX2UKGgGR7/RFa0QbuMNaAdLBGgIR0Cs60KWTot+dX2UKGgGR7+1dszl90A+aAdLAmgIR0Cs6wctf5UMdX2UKGgGR7/WqagElme2aAdLBGgIR0Cs6pGMwUQDdX2UKGgGR7/H5xiobXHzaAdLA2gIR0Cs6tCEQGwBdX2UKGgGR7/QUBnzxwyZaAdLA2gIR0Cs61BXbM5fdX2UKGgGR7/MqoZQ53kgaAdLA2gIR0Cs6xT3RG+cdX2UKGgGR7/CQzUI9kjHaAdLAmgIR0Cs6tmY8dPtdX2UKGgGR7/Uj/+85CF9aAdLA2gIR0Cs6p9LYf4idX2UKGgGR7+/omois4kvaAdLAmgIR0Cs6uS4FzMidX2UKGgGR7/NtsvZh8YyaAdLA2gIR0Cs62B3JPqLdX2UKGgGR7/O0Y0l7dBTaAdLA2gIR0Cs6yUx20RfdX2UKGgGR7+fsRg7YChfaAdLAWgIR0Cs62X974SIdX2UKGgGR7+xydWhh6SlaAdLAmgIR0Cs6u/iPyTZdX2UKGgGR7/TTaTOgQHzaAdLBGgIR0Cs6rXeFcptdX2UKGgGR7+nT1CgK4QSaAdLAWgIR0Cs620tAcDKdX2UKGgGR7/Nxeb/ffoBaAdLA2gIR0Cs6zhFmWdFdX2UKGgGR7+zcXWOIZZTaAdLAmgIR0Cs6vzjm0VrdX2UKGgGR7+2sxO+IuXeaAdLAmgIR0Cs63kBKcurdX2UKGgGR7/Zr56+nIhhaAdLBGgIR0Cs6svHktEodX2UKGgGR7/M37UG3WnTaAdLA2gIR0Cs6wqsEJSjdX2UKGgGR7/JO/L1VYITaAdLA2gIR0Cs64Z6D5CXdX2UKGgGR7++wGGEf1YhaAdLAmgIR0Cs6xYK6WgOdX2UKGgGR7/IbedkJ8fFaAdLA2gIR0Cs6tvKdQO4dX2UKGgGR7/L7YTTOPeYaAdLA2gIR0Cs65YnfEXMdX2UKGgGR7/cI1LrX18LaAdLB2gIR0Cs61rm6oVEdX2UKGgGR7/EPo3aSLZSaAdLAmgIR0Cs6x+R5kbxdX2UKGgGR7+gXqJMxoIwaAdLAWgIR0Cs6yPcJtzkdX2UKGgGR7/LIV/MGHHnaAdLA2gIR0Cs6umVqveQdX2UKGgGR7/Py8zyjHn2aAdLA2gIR0Cs66Z0jkdWdX2UKGgGR7/RTSLIgeRxaAdLA2gIR0Cs62schkiEdX2UKGgGR7+6nk1dgOSXaAdLAmgIR0Cs6y+3x4IKdX2UKGgGR7/BSBshxHXmaAdLAmgIR0Cs6vVTaTOgdX2UKGgGR7/Apd8iOeasaAdLAmgIR0Cs6zjYqXnhdX2UKGgGR7/NywOe8PFvaAdLA2gIR0Cs67SQHRkVdX2UKGgGR7/MdKdxyXD4aAdLA2gIR0Cs6wMCT2WZdX2UKGgGR7/deA/cFhXsaAdLBGgIR0Cs632Qnx8VdX2UKGgGR7+6xbB42S+yaAdLAmgIR0Cs68ANXo1UdX2UKGgGR7/Mz2vjfek6aAdLA2gIR0Cs60jZ+QU6dX2UKGgGR7/DySV4X40uaAdLA2gIR0Cs6xLbQC0XdX2UKGgGR7/M8brC3w1BaAdLA2gIR0Cs6420qpcYdX2UKGgGR7/QhtcfNiYtaAdLA2gIR0Cs61auOjqOdX2UKGgGR7/Ti5NGmUGFaAdLBGgIR0Cs69JnpSrHdX2UKGgGR7+3yRSxZ+x4aAdLAmgIR0Cs65b8m8dxdX2UKGgGR7/TmJFb3XZoaAdLA2gIR0Cs6yD1wo9cdX2UKGgGR7/TXu3MINVjaAdLA2gIR0Cs62XizcASdX2UKGgGR7/QnrIHTqjaaAdLA2gIR0Cs6+GSQo1DdX2UKGgGR7/Ox0uDjBEbaAdLA2gIR0Cs66Yb0e2edX2UKGgGR7+pLVWjoIOZaAdLAWgIR0Cs62qS5iEydX2UKGgGR7/IEDhcZ9/jaAdLA2gIR0Cs6zBt1p0wdX2UKGgGR7+5/hESdvsJaAdLAmgIR0Cs6zkE9t/GdX2UKGgGR7/S/Aj6eoUBaAdLA2gIR0Cs6/Gy5Zr6dX2UKGgGR7/HcpsoDxLCaAdLA2gIR0Cs63rRa5f/dX2UKGgGR7+dTLns9jgAaAdLAWgIR0Cs60CCJ40NdX2UKGgGR7/U+6RQrMC+aAdLBGgIR0Cs67sLv1DjdX2UKGgGR7+gJRfnfVI7aAdLAWgIR0Cs6777CSA6dX2UKGgGR7/Q95yEL6UJaAdLA2gIR0Cs6/8clw98dX2UKGgGR7/LfWtlqagFaAdLA2gIR0Cs64izkZJkdX2UKGgGR7/XELpiZv1laAdLBGgIR0Cs61RBE8aGdX2UKGgGR7/PlSS/0ulHaAdLA2gIR0Cs69CsOoYOdX2UKGgGR7+998Z1mrbQaAdLAmgIR0Cs65UornTzdX2UKGgGR7+gw482aUiZaAdLAWgIR0Cs61qrR0EHdX2UKGgGR7/LooNNJvpAaAdLA2gIR0Cs7BEhJRO2dX2UKGgGR7+giqyWzF/AaAdLAWgIR0Cs7BVQAMlUdX2UKGgGR7/YqNp/PPcBaAdLBGgIR0Cs6+KdQO4HdX2UKGgGR7/W1jiGWUr1aAdLBGgIR0Cs66dMCcPOdX2UKGgGR7/ab7CSA6MjaAdLBGgIR0Cs62zAN5MUdX2UKGgGR7/M8Gs3hn8LaAdLA2gIR0Cs7CVTJhfCdX2UKGgGR7+9nCfpUxVRaAdLAmgIR0Cs67HnMdLhdX2UKGgGR7/RpH7P6be/aAdLA2gIR0Cs6/GTcIqtdX2UKGgGR7/QR8MNMGoraAdLA2gIR0Cs7DFotcv/dX2UKGgGR7+1DXvphWo4aAdLAmgIR0Cs67oldC3PdX2UKGgGR7/VgHeJpFkQaAdLBGgIR0Cs63+xW1c/dX2UKGgGR7/OGHHmzSkTaAdLA2gIR0Cs7ABrvb48dX2UKGgGR7+6us90Rvm6aAdLAmgIR0Cs64pTMqz7dX2UKGgGR7/HHnU2DQJHaAdLA2gIR0Cs7ECtq59WdX2UKGgGR7+b349HMEA6aAdLAWgIR0Cs647HZK4AdX2UKGgGR7/ZgmZ3LV4HaAdLBGgIR0Cs682OZLIxdX2UKGgGR7+8sEq2BreqaAdLAmgIR0Cs65c4xUNsdX2UKGgGR7/KslLOAy2yaAdLA2gIR0Cs7E1D0DlpdX2UKGgGR7/WSy+pOvdNaAdLBGgIR0Cs7BICEHt4dX2UKGgGR7/ELyc0+C9RaAdLAmgIR0Cs69aXrt3OdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fef9cd05a8b4877fcccef861eaee95788dd761e799018e9a5bfea81632a3681c
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af7fda2b5a123e570699a44210d8ce84c331e47402bab69f61d4a78ca58aa42c
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ddd083d4dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ddd083c8d80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692266209272582520, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4m9kPq0dELsi+Oc+4m9kPq0dELsi+Oc+4m9kPq0dELsi+Oc+KPMDv/Tq5b5XEsA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9GoZvwnEiL4yai6/ifZ3P3o+mr88zLM+3RgDv9CjtD8oLGa/TCqdvYQ3Bb8PjYs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADib2Q+rR0QuyL45z4W0fI+wA/NOp6Jwz7ib2Q+rR0QuyL45z4W0fI+wA/NOp6Jwz7ib2Q+rR0QuyL45z4W0fI+wA/NOp6Jwz4o8wO/9OrlvlcSwD4zzBm/MC/Sv9F3cT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.22308305 -0.00219903 0.45306498]\n [ 0.22308305 -0.00219903 0.45306498]\n [ 0.22308305 -0.00219903 0.45306498]\n [-0.515429 -0.44905818 0.37513992]]", "desired_goal": "[[-0.5992882 -0.26712063 -0.6813079 ]\n [ 0.9686056 -1.2050316 0.35116756]\n [-0.51209813 1.4112492 -0.8991113 ]\n [-0.07674083 -0.52037835 1.0902423 ]]", "observation": "[[ 2.2308305e-01 -2.1990344e-03 4.5306498e-01 4.7425145e-01\n 1.5644953e-03 3.8190931e-01]\n [ 2.2308305e-01 -2.1990344e-03 4.5306498e-01 4.7425145e-01\n 1.5644953e-03 3.8190931e-01]\n [ 2.2308305e-01 -2.1990344e-03 4.5306498e-01 4.7425145e-01\n 1.5644953e-03 3.8190931e-01]\n [-5.1542902e-01 -4.4905818e-01 3.7513992e-01 -6.0077208e-01\n -1.6420650e+00 9.4323450e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAx5oTPgOSFD5Hiz8+7DCpvSr6lr0mPaQ9SxgjvOygG7s2Wo0+YF09vYW7gjulF3k+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14414512 0.14508824 0.18705474]\n [-0.08261284 -0.07371934 0.08019476]\n [-0.00995452 -0.0023747 0.27607888]\n [-0.04623163 0.00398964 0.24325426]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8SOJcgQpWqMAWyUSwOMAXSUR0Cs6rSKekHldX2UKGgGR7/RVH4Glhw3aAdLA2gIR0Cs6nkqUeMidX2UKGgGR7/MPwuuieunaAdLA2gIR0Cs6vWjwhGIdX2UKGgGR7/V/tIClrM1aAdLBGgIR0Cs6kocaOxTdX2UKGgGR7/LYwqRU3n7aAdLA2gIR0Cs6ome18b8dX2UKGgGR7/I76pHZsbeaAdLA2gIR0Cs6whf8dgfdX2UKGgGR7/WeDWbwz+FaAdLBGgIR0Cs6s1dHDrJdX2UKGgGR7++2d/axoqTaAdLAmgIR0Cs6ld2xIJ7dX2UKGgGR7/SqVhTfixWaAdLA2gIR0Cs6ptPpIMCdX2UKGgGR7+6UgSvkiljaAdLAmgIR0Cs6mDtXxOMdX2UKGgGR7/Tg5R0lqrSaAdLA2gIR0Cs6xc9nscAdX2UKGgGR7/Tzollbu+iaAdLA2gIR0Cs6tvgWJrMdX2UKGgGR7+4an752yLRaAdLAmgIR0Cs6ueQ2dd3dX2UKGgGR7/Hbu+h4+r3aAdLA2gIR0Cs6nJHy3CsdX2UKGgGR7/Xdmg8KXv6aAdLBGgIR0Cs6rGlImPYdX2UKGgGR7/XIO6NEPUbaAdLBGgIR0Cs6y1Drqt6dX2UKGgGR7+1dkauOjqOaAdLAmgIR0Cs6nvEsJ6ZdX2UKGgGR7/ZKs+3Ytg8aAdLBGgIR0Cs6vqxkd3jdX2UKGgGR7/JiVB2OhkBaAdLA2gIR0Cs6r9u5z5odX2UKGgGR7/RFa0QbuMNaAdLBGgIR0Cs60KWTot+dX2UKGgGR7+1dszl90A+aAdLAmgIR0Cs6wctf5UMdX2UKGgGR7/WqagElme2aAdLBGgIR0Cs6pGMwUQDdX2UKGgGR7/H5xiobXHzaAdLA2gIR0Cs6tCEQGwBdX2UKGgGR7/QUBnzxwyZaAdLA2gIR0Cs61BXbM5fdX2UKGgGR7/MqoZQ53kgaAdLA2gIR0Cs6xT3RG+cdX2UKGgGR7/CQzUI9kjHaAdLAmgIR0Cs6tmY8dPtdX2UKGgGR7/Uj/+85CF9aAdLA2gIR0Cs6p9LYf4idX2UKGgGR7+/omois4kvaAdLAmgIR0Cs6uS4FzMidX2UKGgGR7/NtsvZh8YyaAdLA2gIR0Cs62B3JPqLdX2UKGgGR7/O0Y0l7dBTaAdLA2gIR0Cs6yUx20RfdX2UKGgGR7+fsRg7YChfaAdLAWgIR0Cs62X974SIdX2UKGgGR7+xydWhh6SlaAdLAmgIR0Cs6u/iPyTZdX2UKGgGR7/TTaTOgQHzaAdLBGgIR0Cs6rXeFcptdX2UKGgGR7+nT1CgK4QSaAdLAWgIR0Cs620tAcDKdX2UKGgGR7/Nxeb/ffoBaAdLA2gIR0Cs6zhFmWdFdX2UKGgGR7+zcXWOIZZTaAdLAmgIR0Cs6vzjm0VrdX2UKGgGR7+2sxO+IuXeaAdLAmgIR0Cs63kBKcurdX2UKGgGR7/Zr56+nIhhaAdLBGgIR0Cs6svHktEodX2UKGgGR7/M37UG3WnTaAdLA2gIR0Cs6wqsEJSjdX2UKGgGR7/JO/L1VYITaAdLA2gIR0Cs64Z6D5CXdX2UKGgGR7++wGGEf1YhaAdLAmgIR0Cs6xYK6WgOdX2UKGgGR7/IbedkJ8fFaAdLA2gIR0Cs6tvKdQO4dX2UKGgGR7/L7YTTOPeYaAdLA2gIR0Cs65YnfEXMdX2UKGgGR7/cI1LrX18LaAdLB2gIR0Cs61rm6oVEdX2UKGgGR7/EPo3aSLZSaAdLAmgIR0Cs6x+R5kbxdX2UKGgGR7+gXqJMxoIwaAdLAWgIR0Cs6yPcJtzkdX2UKGgGR7/LIV/MGHHnaAdLA2gIR0Cs6umVqveQdX2UKGgGR7/Py8zyjHn2aAdLA2gIR0Cs66Z0jkdWdX2UKGgGR7/RTSLIgeRxaAdLA2gIR0Cs62schkiEdX2UKGgGR7+6nk1dgOSXaAdLAmgIR0Cs6y+3x4IKdX2UKGgGR7/BSBshxHXmaAdLAmgIR0Cs6vVTaTOgdX2UKGgGR7/Apd8iOeasaAdLAmgIR0Cs6zjYqXnhdX2UKGgGR7/NywOe8PFvaAdLA2gIR0Cs67SQHRkVdX2UKGgGR7/MdKdxyXD4aAdLA2gIR0Cs6wMCT2WZdX2UKGgGR7/deA/cFhXsaAdLBGgIR0Cs632Qnx8VdX2UKGgGR7+6xbB42S+yaAdLAmgIR0Cs68ANXo1UdX2UKGgGR7/Mz2vjfek6aAdLA2gIR0Cs60jZ+QU6dX2UKGgGR7/DySV4X40uaAdLA2gIR0Cs6xLbQC0XdX2UKGgGR7/M8brC3w1BaAdLA2gIR0Cs6420qpcYdX2UKGgGR7/QhtcfNiYtaAdLA2gIR0Cs61auOjqOdX2UKGgGR7/Ti5NGmUGFaAdLBGgIR0Cs69JnpSrHdX2UKGgGR7+3yRSxZ+x4aAdLAmgIR0Cs65b8m8dxdX2UKGgGR7/TmJFb3XZoaAdLA2gIR0Cs6yD1wo9cdX2UKGgGR7/TXu3MINVjaAdLA2gIR0Cs62XizcASdX2UKGgGR7/QnrIHTqjaaAdLA2gIR0Cs6+GSQo1DdX2UKGgGR7/Ox0uDjBEbaAdLA2gIR0Cs66Yb0e2edX2UKGgGR7+pLVWjoIOZaAdLAWgIR0Cs62qS5iEydX2UKGgGR7/IEDhcZ9/jaAdLA2gIR0Cs6zBt1p0wdX2UKGgGR7+5/hESdvsJaAdLAmgIR0Cs6zkE9t/GdX2UKGgGR7/S/Aj6eoUBaAdLA2gIR0Cs6/Gy5Zr6dX2UKGgGR7/HcpsoDxLCaAdLA2gIR0Cs63rRa5f/dX2UKGgGR7+dTLns9jgAaAdLAWgIR0Cs60CCJ40NdX2UKGgGR7/U+6RQrMC+aAdLBGgIR0Cs67sLv1DjdX2UKGgGR7+gJRfnfVI7aAdLAWgIR0Cs6777CSA6dX2UKGgGR7/Q95yEL6UJaAdLA2gIR0Cs6/8clw98dX2UKGgGR7/LfWtlqagFaAdLA2gIR0Cs64izkZJkdX2UKGgGR7/XELpiZv1laAdLBGgIR0Cs61RBE8aGdX2UKGgGR7/PlSS/0ulHaAdLA2gIR0Cs69CsOoYOdX2UKGgGR7+998Z1mrbQaAdLAmgIR0Cs65UornTzdX2UKGgGR7+gw482aUiZaAdLAWgIR0Cs61qrR0EHdX2UKGgGR7/LooNNJvpAaAdLA2gIR0Cs7BEhJRO2dX2UKGgGR7+giqyWzF/AaAdLAWgIR0Cs7BVQAMlUdX2UKGgGR7/YqNp/PPcBaAdLBGgIR0Cs6+KdQO4HdX2UKGgGR7/W1jiGWUr1aAdLBGgIR0Cs66dMCcPOdX2UKGgGR7/ab7CSA6MjaAdLBGgIR0Cs62zAN5MUdX2UKGgGR7/M8Gs3hn8LaAdLA2gIR0Cs7CVTJhfCdX2UKGgGR7+9nCfpUxVRaAdLAmgIR0Cs67HnMdLhdX2UKGgGR7/RpH7P6be/aAdLA2gIR0Cs6/GTcIqtdX2UKGgGR7/QR8MNMGoraAdLA2gIR0Cs7DFotcv/dX2UKGgGR7+1DXvphWo4aAdLAmgIR0Cs67oldC3PdX2UKGgGR7/VgHeJpFkQaAdLBGgIR0Cs63+xW1c/dX2UKGgGR7/OGHHmzSkTaAdLA2gIR0Cs7ABrvb48dX2UKGgGR7+6us90Rvm6aAdLAmgIR0Cs64pTMqz7dX2UKGgGR7/HHnU2DQJHaAdLA2gIR0Cs7ECtq59WdX2UKGgGR7+b349HMEA6aAdLAWgIR0Cs647HZK4AdX2UKGgGR7/ZgmZ3LV4HaAdLBGgIR0Cs682OZLIxdX2UKGgGR7+8sEq2BreqaAdLAmgIR0Cs65c4xUNsdX2UKGgGR7/KslLOAy2yaAdLA2gIR0Cs7E1D0DlpdX2UKGgGR7/WSy+pOvdNaAdLBGgIR0Cs7BICEHt4dX2UKGgGR7/ELyc0+C9RaAdLAmgIR0Cs69aXrt3OdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (658 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.1683812396135181, "std_reward": 0.07914871686371693, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-17T11:03:07.579754"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:852881fdf375d38e78d053c3d05cad6eb44c1973b4f34ee3cf1931565fd35ef3
|
3 |
+
size 2623
|