--- base_model: openai/whisper-large-v2 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-large-v2-ft-cv16-1__car100-all-format-avg_copy2x_voiceless-241219-v1 results: [] --- # whisper-large-v2-ft-cv16-1__car100-all-format-avg_copy2x_voiceless-241219-v1 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4773 | 1.0 | 65 | 2.3737 | | 1.4068 | 2.0 | 130 | 0.3870 | | 0.1629 | 3.0 | 195 | 0.1140 | | 0.1225 | 4.0 | 260 | 0.1085 | | 0.106 | 5.0 | 325 | 0.1079 | | 0.0935 | 6.0 | 390 | 0.1087 | | 0.0848 | 7.0 | 455 | 0.1098 | | 0.0772 | 8.0 | 520 | 0.1113 | | 0.0718 | 9.0 | 585 | 0.1123 | | 0.069 | 10.0 | 650 | 0.1126 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.0