File size: 9,729 Bytes
3977ced
 
 
 
 
 
 
 
 
3ddbc59
 
 
 
3977ced
 
 
 
 
4f490f8
3ddbc59
 
 
3977ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326d518
 
b225392
3977ced
326d518
b19a398
3977ced
 
b225392
326d518
3977ced
00adddb
3977ced
f0b017b
326d518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b017b
 
00adddb
f0b017b
 
 
00adddb
f0b017b
 
3977ced
 
 
 
4f490f8
 
3977ced
3ddbc59
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
library_name: transformers
license: mit
base_model: openai-community/gpt2
tags:
- generated_from_trainer
model-index:
- name: arabic-nano-gpt
  results: []
datasets:
- wikimedia/wikipedia
language:
- ar
---


# arabic-nano-gpt

This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on an unknown dataset.
It achieves the following results on the held-out test set:
- Loss: 3.28796


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 24

<!-- ### Training results -->

<!-- | Training Loss | Epoch  | Step   | Validation Loss |
|:-------------:|:------:|:------:|:---------------:|
| 5.62          | 0.0585 | 1000   | 5.3754          |
| 4.6527        | 0.1170 | 2000   | 4.4918          |
| 4.2818        | 0.1755 | 3000   | 4.1137          |
| 4.1289        | 0.2340 | 4000   | 3.9388          |
| 4.0021        | 0.2924 | 5000   | 3.8274          |
| 3.9301        | 0.3509 | 6000   | 3.7534          |
| 3.8822        | 0.4094 | 7000   | 3.6986          |
| 3.8375        | 0.4679 | 8000   | 3.6557          |
| 3.7918        | 0.5264 | 9000   | 3.6266          |
| 3.7723        | 0.5849 | 10000  | 3.5994          |
| 3.7549        | 0.6434 | 11000  | 3.5787          |
| 3.7324        | 0.7019 | 12000  | 3.5612          |
| 3.7249        | 0.7604 | 13000  | 3.5436          |
| 3.6989        | 0.8188 | 14000  | 3.5323          |
| 3.7003        | 0.8773 | 15000  | 3.5169          |
| 3.6919        | 0.9358 | 16000  | 3.5055          |
| 3.6717        | 0.9943 | 17000  | 3.4966          |
| 3.6612        | 1.0528 | 18000  | 3.4868          |
| 3.6467        | 1.1113 | 19000  | 3.4787          |
| 3.6497        | 1.1698 | 20000  | 3.4707          |
| 3.6193        | 1.2283 | 21000  | 3.4639          |
| 3.6302        | 1.2868 | 22000  | 3.4572          |
| 3.6225        | 1.3452 | 23000  | 3.4516          |
| 3.635         | 1.4037 | 24000  | 3.4458          |
| 3.6115        | 1.4622 | 25000  | 3.4416          |
| 3.6162        | 1.5207 | 26000  | 3.4348          |
| 3.6142        | 1.5792 | 27000  | 3.4329          |
| 3.5956        | 1.6377 | 28000  | 3.4293          |
| 3.5885        | 1.6962 | 29000  | 3.4226          |
| 3.603         | 1.7547 | 30000  | 3.4195          |
| 3.5947        | 1.8132 | 31000  | 3.4142          |
| 3.588         | 1.8716 | 32000  | 3.4113          |
| 3.5803        | 1.9301 | 33000  | 3.4065          |
| 3.5891        | 1.9886 | 34000  | 3.4044          |
| 3.5801        | 2.0471 | 35000  | 3.4032          |
| 3.5739        | 2.1056 | 36000  | 3.3988          |
| 3.5661        | 2.1641 | 37000  | 3.3981          |
| 3.5657        | 2.2226 | 38000  | 3.3934          |
| 3.5727        | 2.2811 | 39000  | 3.3907          |
| 3.5617        | 2.3396 | 40000  | 3.3885          |
| 3.5579        | 2.3980 | 41000  | 3.3855          |
| 3.5553        | 2.4565 | 42000  | 3.3816          |
| 3.5647        | 2.5150 | 43000  | 3.3803          |
| 3.5531        | 2.5735 | 44000  | 3.3799          |
| 3.5494        | 2.6320 | 45000  | 3.3777          |
| 3.5525        | 2.6905 | 46000  | 3.3759          |
| 3.5487        | 2.7490 | 47000  | 3.3725          |
| 3.5551        | 2.8075 | 48000  | 3.3711          |
| 3.5511        | 2.8660 | 49000  | 3.3681          |
| 3.5463        | 2.9244 | 50000  | 3.3695          |
| 3.5419        | 2.9829 | 51000  | 3.3660          |
| 3.5414        | 3.0414 | 52000  | 3.3648          |
| 3.5388        | 3.0999 | 53000  | 3.3605          |
| 3.5333        | 3.1584 | 54000  | 3.3619          |
| 3.525         | 3.2169 | 55000  | 3.3588          |
| 3.5361        | 3.2754 | 56000  | 3.3572          |
| 3.5302        | 3.3339 | 57000  | 3.3540          |
| 3.5355        | 3.3924 | 58000  | 3.3553          |
| 3.5391        | 3.4508 | 59000  | 3.3504          |
| 3.531         | 3.5093 | 60000  | 3.3495          |
| 3.5293        | 3.5678 | 61000  | 3.3483          |
| 3.5269        | 3.6263 | 62000  | 3.3489          |
| 3.5181        | 3.6848 | 63000  | 3.3494          |
| 3.5205        | 3.7433 | 64000  | 3.3480          |
| 3.5237        | 3.8018 | 65000  | 3.3440          |
| 3.5316        | 3.8603 | 66000  | 3.3417          |
| 3.5222        | 3.9188 | 67000  | 3.3433          |
| 3.5174        | 3.9772 | 68000  | 3.3418          |
| 3.518         | 4.0357 | 69000  | 3.3414          |
| 3.5036        | 4.0942 | 70000  | 3.3365          |
| 3.5101        | 4.1527 | 71000  | 3.3367          |
| 3.5145        | 4.2112 | 72000  | 3.3361          |
| 3.5053        | 4.2697 | 73000  | 3.3355          |
| 3.5153        | 4.3282 | 74000  | 3.3334          |
| 3.5003        | 4.3867 | 75000  | 3.3334          |
| 3.5001        | 4.4452 | 76000  | 3.3326          |
| 3.5114        | 4.5036 | 77000  | 3.3298          |
| 3.5108        | 4.5621 | 78000  | 3.3292          |
| 3.4985        | 4.6206 | 79000  | 3.3288          |
| 3.497         | 4.6791 | 80000  | 3.3303          |
| 3.4982        | 4.7376 | 81000  | 3.3291          |
| 3.5068        | 4.7961 | 82000  | 3.3272          |
| 3.4915        | 4.8546 | 83000  | 3.3244          |
| 3.5036        | 4.9131 | 84000  | 3.3214          |
| 3.5027        | 4.9716 | 85000  | 3.3214          |
| 3.5078        | 5.0300 | 86000  | 3.3225          |
| 3.5112        | 5.0885 | 87000  | 3.3243          |
| 3.5049        | 5.1470 | 88000  | 3.3216          |
| 3.4917        | 5.2055 | 89000  | 3.3192          |
| 3.4802        | 5.2640 | 90000  | 3.3188          |
| 3.4971        | 5.3225 | 91000  | 3.3201          |
| 3.4941        | 5.3810 | 92000  | 3.3175          |
| 3.4998        | 5.4395 | 93000  | 3.3179          |
| 3.5011        | 5.4980 | 94000  | 3.3164          |
| 3.4912        | 5.5564 | 95000  | 3.3180          |
| 3.4961        | 5.6149 | 96000  | 3.3168          |
| 3.4833        | 5.6734 | 97000  | 3.3148          |
| 3.498         | 5.7319 | 98000  | 3.3133          |
| 3.4892        | 5.7904 | 99000  | 3.3142          |
| 3.4967        | 5.8489 | 100000 | 3.3142          |
| 3.4847        | 5.9074 | 101000 | 3.3094          |
| 3.4899        | 5.9659 | 102000 | 3.3102          |
| 3.4774        | 6.0244 | 103000 | 3.3110          |
| 3.4854        | 6.0828 | 104000 | 3.3106          |
| 3.4873        | 6.1413 | 105000 | 3.3087          |
| 3.4869        | 6.1998 | 106000 | 3.3102          |
| 3.4833        | 6.2583 | 107000 | 3.3063          |
| 3.491         | 6.3168 | 108000 | 3.3082          |
| 3.4776        | 6.3753 | 109000 | 3.3075          |
| 3.4924        | 6.4338 | 110000 | 3.3068          |
| 3.4804        | 6.4923 | 111000 | 3.3050          |
| 3.4805        | 6.5508 | 112000 | 3.3041          |
| 3.4892        | 6.6093 | 113000 | 3.3031          |
| 3.4775        | 6.6677 | 114000 | 3.3032          |
| 3.481         | 6.7262 | 115000 | 3.3036          |
| 3.4782        | 6.7847 | 116000 | 3.3025          |
| 3.4804        | 6.8432 | 117000 | 3.3017          |
| 3.4841        | 6.9017 | 118000 | 3.2999          |
| 3.4784        | 6.9602 | 119000 | 3.3008          |
| 3.4821        | 7.0187 | 120000 | 3.3001          |
| 3.4671        | 7.0772 | 121000 | 3.3008          |
| 3.485         | 7.1357 | 122000 | 3.2976          |
| 3.4737        | 7.1941 | 123000 | 3.2985          |
| 3.4793        | 7.2526 | 124000 | 3.2979          |
| 3.4651        | 7.3111 | 125000 | 3.2968          |
| 3.4847        | 7.3696 | 126000 | 3.2974          |
| 3.474         | 7.4281 | 127000 | 3.2973          |
| 3.4769        | 7.4866 | 128000 | 3.2955          |
| 3.486         | 7.5451 | 129000 | 3.2953          |
| 3.4684        | 7.6036 | 130000 | 3.2944          |
| 3.4826        | 7.6621 | 131000 | 3.2949          |
| 3.4685        | 7.7205 | 132000 | 3.2944          |
| 3.4608        | 7.7790 | 133000 | 3.2931          |
| 3.4655        | 7.8375 | 134000 | 3.2953          |
| 3.4648        | 7.8960 | 135000 | 3.2928          |
| 3.4632        | 7.9545 | 136000 | 3.2936          |
| 3.4666        | 8.0130 | 137000 | 3.2902          |
| 3.4663        | 8.0715 | 138000 | 3.2939          |
| 3.4713        | 8.1300 | 139000 | 3.2904          |
| 3.4654        | 8.1885 | 140000 | 3.2917          |
| 3.466         | 8.2469 | 141000 | 3.2913          |
| 3.4724        | 8.3054 | 142000 | 3.2889          |
| 3.4695        | 8.3639 | 143000 | 3.2890          |
| 3.4729        | 8.4224 | 144000 | 3.2876          |
| 3.4551        | 8.4809 | 145000 | 3.2898          |
| 3.4652        | 8.5394 | 146000 | 3.2885          |
| 3.4689        | 8.5979 | 147000 | 3.2854          |
| 3.4647        | 8.6564 | 148000 | 3.2857          |
| 3.4653        | 8.7149 | 149000 | 3.2857          |
| 3.4552        | 8.7733 | 150000 | 3.2861          |
| 3.47          | 8.8318 | 151000 | 3.2868          |
| 3.4627        | 8.8903 | 152000 | 3.2854          | -->

### Training Loss

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ccee86374057a338e03c1e/970nr9bptjHSMsjLDHfaY.png)

## Validation Loss

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ccee86374057a338e03c1e/GUbnak7yV02vd0NZhbeEO.png)


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0
- Datasets 3.0.1
- Tokenizers 0.20.1