--- library_name: transformers license: mit base_model: openai-community/gpt2 tags: - generated_from_trainer model-index: - name: arabic-nano-gpt results: [] datasets: - wikimedia/wikipedia language: - ar --- # arabic-nano-gpt This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the arabic [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset. Repository on GitHub: [e-hossam96/arabic-nano-gpt](https://github.com/e-hossam96/arabic-nano-gpt.git) The model achieves the following results on the held-out test set: - Loss: 3.28796 ## How to Use ```python import torch from transformers import pipeline model_ckpt = "e-hossam96/arabic-nano-gpt-v0" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") lm = pipeline(task="text-generation", model=model_ckpt, device=device) prompt = """المحرك النفاث هو محرك ينفث الموائع (الماء أو الهواء) بسرعة فائقة \ لينتج قوة دافعة اعتمادا على مبدأ قانون نيوتن الثالث للحركة. \ هذا التعريف الواسع للمحركات النفاثة يتضمن أيضا""" output = lm(prompt, max_new_tokens=128) print(output[0]["generated_text"]) ``` ## Model description - Embedding Size: 256 - Attention Heads: 4 - Attention Layers: 4 ## Training and evaluation data The entire wikipedia dataset was split into three splits based on the 90-5-5 ratios. ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 24 ## Training Loss ![Training Loss](assets/arabic-nano-gpt-v0-train-loss.png) ## Validation Loss ![Validation Loss](assets/arabic-nano-gpt-v0-eval-loss.png) ## Framework versions - Transformers 4.45.2 - Pytorch 2.5.0 - Datasets 3.0.1 - Tokenizers 0.20.1