File size: 2,824 Bytes
82061d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
library_name: transformers
license: mit
base_model: openai-community/gpt2
tags:
- generated_from_trainer
model-index:
- name: arabic-nano-gpt-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# arabic-nano-gpt-v2

This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2532

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 8

### Training results

| Training Loss | Epoch  | Step   | Validation Loss |
|:-------------:|:------:|:------:|:---------------:|
| 4.9097        | 0.2924 | 5000   | 4.3161          |
| 4.0426        | 0.5849 | 10000  | 3.8633          |
| 3.8791        | 0.8773 | 15000  | 3.6969          |
| 3.7452        | 1.1698 | 20000  | 3.6052          |
| 3.6927        | 1.4622 | 25000  | 3.5420          |
| 3.6348        | 1.7547 | 30000  | 3.4976          |
| 3.6038        | 2.0471 | 35000  | 3.4622          |
| 3.562         | 2.3396 | 40000  | 3.4329          |
| 3.5374        | 2.6320 | 45000  | 3.4098          |
| 3.5216        | 2.9245 | 50000  | 3.3897          |
| 3.4918        | 3.2169 | 55000  | 3.3743          |
| 3.4805        | 3.5094 | 60000  | 3.3585          |
| 3.4724        | 3.8018 | 65000  | 3.3445          |
| 3.4519        | 4.0943 | 70000  | 3.3337          |
| 3.4422        | 4.3867 | 75000  | 3.3224          |
| 3.4376        | 4.6791 | 80000  | 3.3133          |
| 3.4316        | 4.9716 | 85000  | 3.3042          |
| 3.4123        | 5.2640 | 90000  | 3.2972          |
| 3.4076        | 5.5565 | 95000  | 3.2897          |
| 3.4018        | 5.8489 | 100000 | 3.2823          |
| 3.3943        | 6.1414 | 105000 | 3.2772          |
| 3.3891        | 6.4338 | 110000 | 3.2720          |
| 3.3805        | 6.7263 | 115000 | 3.2661          |
| 3.3786        | 7.0187 | 120000 | 3.2625          |
| 3.3713        | 7.3112 | 125000 | 3.2587          |
| 3.3662        | 7.6036 | 130000 | 3.2553          |
| 3.365         | 7.8961 | 135000 | 3.2532          |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0
- Datasets 3.0.1
- Tokenizers 0.20.1