File size: 2,150 Bytes
82061d3
 
 
 
 
221a10b
82061d3
221a10b
 
c80d57a
221a10b
c80d57a
221a10b
82061d3
 
 
 
221a10b
 
 
 
 
 
c80d57a
82061d3
221a10b
82061d3
221a10b
 
 
82061d3
221a10b
 
82061d3
 
221a10b
 
 
 
 
 
 
 
 
 
82061d3
221a10b
 
 
 
 
82061d3
221a10b
82061d3
221a10b
 
 
82061d3
 
221a10b
82061d3
 
 
 
 
 
 
 
 
 
 
221a10b
 
 
 
 
 
 
 
 
82061d3
 
 
 
221a10b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
license: mit
base_model: openai-community/gpt2
tags:
  - generated_from_trainer
model-index:
  - name: arabic-nano-gpt-v2
    results: []
datasets:
  - wikimedia/wikipedia
language:
  - ar
---

# arabic-nano-gpt-v2

This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the arabic [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset.

Repository on GitHub: [e-hossam96/arabic-nano-gpt](https://github.com/e-hossam96/arabic-nano-gpt.git)

The model achieves the following results on the held-out test set:

- Loss: 3.25564

## How to Use

```python
import torch
from transformers import pipeline

model_ckpt = "e-hossam96/arabic-nano-gpt-v2"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


lm = pipeline(task="text-generation", model=model_ckpt, device=device)

prompt = """المحرك النفاث هو محرك ينفث الموائع (الماء أو الهواء) بسرعة فائقة \
لينتج قوة دافعة اعتمادا على مبدأ قانون نيوتن الثالث للحركة. \
هذا التعريف الواسع للمحركات النفاثة يتضمن أيضا"""

output = lm(prompt, max_new_tokens=128)

print(output[0]["generated_text"])
```

## Model description

- Embedding Size: 384
- Attention Heads: 6
- Attention Layers: 8

## Training and evaluation data

The entire wikipedia dataset was split into three splits based on the 90-5-5 ratios.

## Training hyperparameters

The following hyperparameters were used during training:

- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 8

## Training Loss

![Training Loss](assets/arabic-nano-gpt-v2-train-loss.png)

## Validation Loss

![Validation Loss](assets/arabic-nano-gpt-v2-eval-loss.png)

## Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0
- Datasets 3.0.1
- Tokenizers 0.20.1