e22vvb commited on
Commit
bf33224
·
1 Parent(s): 976c8b3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikisql
7
+ model-index:
8
+ - name: EN_mt5-base_15_wikiSQL
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # EN_mt5-base_15_wikiSQL
16
+
17
+ This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the wikisql dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0849
20
+ - Rouge2 Precision: 0.8692
21
+ - Rouge2 Recall: 0.7928
22
+ - Rouge2 Fmeasure: 0.8234
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 15
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
53
+ | 0.1534 | 1.0 | 4049 | 0.1157 | 0.8319 | 0.756 | 0.7858 |
54
+ | 0.1204 | 2.0 | 8098 | 0.0980 | 0.8469 | 0.7706 | 0.8011 |
55
+ | 0.1006 | 3.0 | 12147 | 0.0926 | 0.855 | 0.7775 | 0.8086 |
56
+ | 0.0892 | 4.0 | 16196 | 0.0881 | 0.8579 | 0.7811 | 0.8119 |
57
+ | 0.0809 | 5.0 | 20245 | 0.0857 | 0.8605 | 0.7839 | 0.8145 |
58
+ | 0.0725 | 6.0 | 24294 | 0.0849 | 0.8643 | 0.787 | 0.8181 |
59
+ | 0.0672 | 7.0 | 28343 | 0.0841 | 0.8662 | 0.7889 | 0.8199 |
60
+ | 0.0628 | 8.0 | 32392 | 0.0847 | 0.8657 | 0.7895 | 0.82 |
61
+ | 0.0589 | 9.0 | 36441 | 0.0835 | 0.8676 | 0.7909 | 0.8216 |
62
+ | 0.0565 | 10.0 | 40490 | 0.0839 | 0.8685 | 0.7914 | 0.8223 |
63
+ | 0.0532 | 11.0 | 44539 | 0.0837 | 0.8689 | 0.7925 | 0.8231 |
64
+ | 0.051 | 12.0 | 48588 | 0.0844 | 0.8692 | 0.7927 | 0.8233 |
65
+ | 0.0504 | 13.0 | 52637 | 0.0848 | 0.869 | 0.7924 | 0.8231 |
66
+ | 0.0485 | 14.0 | 56686 | 0.0848 | 0.869 | 0.7928 | 0.8233 |
67
+ | 0.0479 | 15.0 | 60735 | 0.0849 | 0.8692 | 0.7928 | 0.8234 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.26.1
73
+ - Pytorch 2.0.1+cu117
74
+ - Datasets 2.14.7.dev0
75
+ - Tokenizers 0.13.3