e22vvb commited on
Commit
8622236
·
1 Parent(s): ef392c0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikisql
7
+ model-index:
8
+ - name: TH_mt5-base-finetuned-wikisql
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # TH_mt5-base-finetuned-wikisql
16
+
17
+ This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the wikisql dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3517
20
+ - Rouge2 Precision: 0.6349
21
+ - Rouge2 Recall: 0.5656
22
+ - Rouge2 Fmeasure: 0.5929
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 5
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
53
+ | 0.4981 | 1.0 | 4049 | 0.4153 | 0.5813 | 0.5159 | 0.5409 |
54
+ | 0.4242 | 2.0 | 8098 | 0.3777 | 0.6117 | 0.543 | 0.5695 |
55
+ | 0.384 | 3.0 | 12147 | 0.3599 | 0.6264 | 0.5573 | 0.5844 |
56
+ | 0.3651 | 4.0 | 16196 | 0.3537 | 0.6343 | 0.5639 | 0.5917 |
57
+ | 0.3557 | 5.0 | 20245 | 0.3517 | 0.6349 | 0.5656 | 0.5929 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.26.1
63
+ - Pytorch 2.0.1+cu117
64
+ - Datasets 2.14.7.dev0
65
+ - Tokenizers 0.13.3