--- license: apache-2.0 inference: false --- ![perplexity stats](https://huggingface.co/eachadea/ggml-vicuna-13b-1.1/resolve/main/perplexity.png) **NOTE: This GGML conversion is primarily for use with llama.cpp.** - 13B parameters - 4-bit quantized - Based on version 1.1 - Used PR "More accurate Q4_0 and Q4_1 quantizations #896" (should be closer in quality to unquantized) - Choosing between q4_0 and q4_1, the logic of higher number \= better does not apply. If you are confused, stick with q4_0. - If you have performance to spare, it might be worth getting the q4_1. It's ~20% slower and requires 1GB more RAM, but has a ~5% lower perplexity, which is good for generation quality. You're not gonna notice it though. - If you have *lots* of performance to spare, [TheBloke's conversion](https://huggingface.co/TheBloke/vicuna-13B-1.1-GPTQ-4bit-128g-GGML) is maybe ~7% better in perplexity but ~50% slower and requires 2GB more RAM. - 7B version of this can be found here: https://huggingface.co/eachadea/ggml-vicuna-7b-1.1

# Vicuna Model Card ## Model details **Model type:** Vicuna is an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. It is an auto-regressive language model, based on the transformer architecture. **Model date:** Vicuna was trained between March 2023 and April 2023. **Organizations developing the model:** The Vicuna team with members from UC Berkeley, CMU, Stanford, and UC San Diego. **Paper or resources for more information:** https://vicuna.lmsys.org/ **License:** Apache License 2.0 **Where to send questions or comments about the model:** https://github.com/lm-sys/FastChat/issues ## Intended use **Primary intended uses:** The primary use of Vicuna is research on large language models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## Training dataset 70K conversations collected from ShareGPT.com. ## Evaluation dataset A preliminary evaluation of the model quality is conducted by creating a set of 80 diverse questions and utilizing GPT-4 to judge the model outputs. See https://vicuna.lmsys.org/ for more details. ## Major updates of weights v1.1 - Refactor the tokenization and separator. In Vicuna v1.1, the separator has been changed from `"###"` to the EOS token `""`. This change makes it easier to determine the generation stop criteria and enables better compatibility with other libraries. - Fix the supervised fine-tuning loss computation for better model quality.