{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7af2aee30540>" }, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726101156129267350, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": { ":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEasOD6D8128giGnPP1CxLr5r8C9c5O8uwAAgD8AAIA/BiIfPqSdQjyuEsq9/QySvfS9Kz4MOh6+AACAPwAAgD/TbhO+z58RP2y4uj1mrzS+1Zqqu52sWT0AAAAAAAAAADN2AL2DX0A/3R+rvNxJW77oJWe8WlBaPAAAAAAAAAAADVaAvt31PL0uZbi5XPaOuL4xpj7CCwQ5AACAPwAAgD+zpJk9w8ETuta63r37Ypa2yRKWupCSBzYAAAAAAAAAAG3HOj5IDbO8VhSLOuogBrny3Ry+oUO8uQAAgD8AAIA/k9RUPg/KU7yu28860HTJuBEYvr02Rvm5AACAPwAAgD/a908+bMTHPAiUdrph+tq4/wpbPoM48LkAAIA/AACAPxoV5b3+xZg/RfvRvsYAnr6r/eO9r5eWvQAAAAAAAAAAKPymvtxsDD+/i6U9WTZKvq2+Sr3nmsc8AAAAAAAAAABasC0+pMg7PF0moL1jcu67rq/PPWPf5LwAAIA/AACAP7qkVb7sfIk8swZhu/VJqTkcvhG+BiSPOgAAgD8AAIA/ox6aPm8dcj3X+0M68pkhOZ/8rT4iiIi5AACAPwAAgD+wvJo+7EzdPBx5CL6mo1y+HW/bvOC1CbwAAAAAAAAAAMD/Mj5O46K8pgu+uoUnDzn3UA++hpf9OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg==" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGz/foJRfniMAWyUTYMBjAF0lEdAp+l87hegMHV9lChoBkdAb5DbbDdgv2gHTVIBaAhHQKfsHqN6w+t1fZQoaAZHQGxpoDHOryVoB01DAWgIR0Cn7F5sTFl1dX2UKGgGR0BtYMfeUILPaAdNQAFoCEdAp+0mcDr7f3V9lChoBkdAVu6IN3GGVWgHTegDaAhHQKfuoxdIGyJ1fZQoaAZHQG+q7Z39rGloB01+AWgIR0Cn7zcfvF3qdX2UKGgGR0Bv+8RnOB1+aAdNLAFoCEdAp/Ahbt7a7HV9lChoBkdAcF/11W8yvmgHTVQBaAhHQKfw0yCWeH11fZQoaAZHQHBgx/NJOFhoB01EAWgIR0Cn8SICuEEldX2UKGgGRz/0+Il+mWMTaAdNLAFoCEdAp/Ex3iaRZHV9lChoBkdAbkYoLofSyGgHTUkBaAhHQKfxRR4QjD91fZQoaAZHQFgxfNiYsupoB03oA2gIR0Cn8ZAieNDMdX2UKGgGR0BtRL4SHuZ1aAdNOgFoCEdAp/HROHnEEXV9lChoBkdAcdRVktmL+GgHTTsBaAhHQKfx3QP7N0N1fZQoaAZHQHFBl94NZvFoB00EAmgIR0Cn8zTVtoBadX2UKGgGR0Bqfu6mO2iMaAdNQwFoCEdAp/R7mwJPZnV9lChoBkdAb8c3KB/ZumgHTXIBaAhHQKf0s6Mir1d1fZQoaAZHQG7BVpTMqz9oB00oAWgIR0Cn9OA08/2TdX2UKGgGR0BfrHZGrjo7aAdN6ANoCEdAp/U5ftx+8XV9lChoBkdAbejDziCJ42gHTTsBaAhHQKf1i2RaHKx1fZQoaAZHQHKov4EfT1FoB00XAWgIR0Cn9hlERaoudX2UKGgGR0BvPq7GvOhTaAdNUQFoCEdAp/bz+BH09XV9lChoBkdAay66aLGaQWgHTXUBaAhHQKf3Nfek56t1fZQoaAZHQHG92VRk3CNoB00yAWgIR0Cn92lMh5gPdX2UKGgGR0BtkLy+Yc//aAdNXgFoCEdAp/ecCkoF3nV9lChoBkdAaovABT4tYmgHTZcBaAhHQKgqJND+irV1fZQoaAZHQGuctA9mpVFoB014AWgIR0CoKkwyqMm4dX2UKGgGR0Bdahh6Skj5aAdN6ANoCEdAqCqLel9Br3V9lChoBkdAamePwNLDh2gHTVQBaAhHQKgrJR4QjD91fZQoaAZHQGsvZ+YtxuNoB02YAmgIR0CoK9Jtzjm0dX2UKGgGR0BwAmptJnQIaAdNQQFoCEdAqCwrz9S/CnV9lChoBkdAchD/pt78emgHTQ4BaAhHQKgsmug6EJ11fZQoaAZHQHB7qshgVoJoB01IAWgIR0CoLSLZBcAzdX2UKGgGR0BuxnX5FgDzaAdNQwFoCEdAqC6Qvi97GHV9lChoBkdAbNyJD3M6imgHTUcBaAhHQKgvKZhrnDB1fZQoaAZHQDKENgBtDUpoB00/AWgIR0CoLznTiKixdX2UKGgGR0Bv0yE+PikwaAdNbQFoCEdAqC+6Z6Uqx3V9lChoBkdAcN+uTzND+mgHTTgBaAhHQKgwLzOoo/l1fZQoaAZHQHFfKRU3n6loB00UAmgIR0CoMDo0ygwodX2UKGgGR0BthnDLr5ZbaAdNOgFoCEdAqDCk3l0YCXV9lChoBkdAbuYiKziS72gHTRgCaAhHQKgwqcvM8ox1fZQoaAZHQG8Tqq4pc5doB003AWgIR0CoMSzt1IRRdX2UKGgGR0BqaiFCb+cZaAdNQQJoCEdAqDG7SmZVn3V9lChoBkdAbmxHG0eEI2gHTSgBaAhHQKgx8JZW7vp1fZQoaAZHQHFTzkuHvc9oB00yA2gIR0CoMlqA8SwodX2UKGgGR0BskFsxfv4NaAdNNQFoCEdAqDM1lbu+iHV9lChoBkdAcCtnkT6BRWgHTWsBaAhHQKgzuLUkOZt1fZQoaAZHQG/TTm4iHIpoB01HAWgIR0CoNQgQg9vCdX2UKGgGR0A5fw9aEBbOaAdNBAFoCEdAqDXTPa+N+HV9lChoBkdAcDKi3G4qgGgHTUMBaAhHQKg2N9VFQVN1fZQoaAZHQG7xbVrhzeZoB01QAWgIR0CoNwFFc6eYdX2UKGgGR0Bpp8TJyQxOaAdNVAFoCEdAqDclrGipN3V9lChoBkdAbbDnMdLg42gHTT0BaAhHQKg3JedCmdl1fZQoaAZHQG4IsNlRP45oB00yAWgIR0CoN5Ni6QNkdX2UKGgGR0BxA+ntOVPfaAdNuQFoCEdAqDg2xrzoU3V9lChoBkdAbwlVJ+UhV2gHTU4BaAhHQKg49yXlbNd1fZQoaAZHQGwLIkiUxEhoB03YAWgIR0CoOSdlum78dX2UKGgGR0BvJI/7iyY5aAdNXwFoCEdAqDm+NDMNdHV9lChoBkdAaWUNCqp97WgHTSYBaAhHQKg6s9i+cpd1fZQoaAZHQG7oXg1m8NBoB008AWgIR0CoPTOqFRHgdX2UKGgGR0BCug9eQdS3aAdNDAFoCEdAqD1NRHf/FXV9lChoBkdAcBv85S3somgHTSoBaAhHQKg9vDkU9IR1fZQoaAZHQBjR7qptJnRoB00aAWgIR0CoPtUtRNypdX2UKGgGR0BxQ5wMpgCwaAdNFgFoCEdAqD7noA4n4XV9lChoBkdAbJfP5YYBNmgHTTYBaAhHQKhANwUg0TF1fZQoaAZHQHEgxYFJQLxoB01iAWgIR0CoQNNcv/R3dX2UKGgGR0BhTxsEaESNaAdN6ANoCEdAqEDahakhzXV9lChoBkdAbUSpkwvg32gHTVMBaAhHQKhBjDu0CzV1fZQoaAZHQG+Y0lJHy3FoB01GAWgIR0CoQdnqeK8+dX2UKGgGR0BQOjzAeq7zaAdN6ANoCEdAqEKZ8F6iTXV9lChoBkdAcPaxbjcVQGgHTVABaAhHQKhCoIdELIB1fZQoaAZHQHIahYigTRJoB02QAWgIR0CoQ2YKIBRydX2UKGgGR0Bxm0Syt3fRaAdNawFoCEdAqEPRfpljE3V9lChoBkdAbe01Vo6CDmgHTUkBaAhHQKhFVaXa8Hx1fZQoaAZHQHHPajnFHaxoB00vAWgIR0CoRYY9HMEBdX2UKGgGR0BvESuQp4KQaAdNagFoCEdAqEW0XHim23V9lChoBkdAbuKJ8fFJhGgHTUkBaAhHQKhHZvoePq91fZQoaAZHwE+TqQA+6iFoB00eAWgIR0CoSDOdPLxJdX2UKGgGR0Bs8+mrKeTWaAdNVQFoCEdAqEhdtoBaLXV9lChoBkdAcGANHH3lCGgHTT0BaAhHQKhInNHpbEB1fZQoaAZHQG50vJzT4L1oB01lAWgIR0CoSLu/+Kj0dX2UKGgGR0Bu3FbPhQ3xaAdNLAFoCEdAqElr7VJ+UnV9lChoBkdAbJOD8Lron2gHTT0BaAhHQKhJzWgezUt1fZQoaAZHQGK6sk6cRUZoB03oA2gIR0CoSi6wdKdydX2UKGgGR0Bci1MyrPt2aAdN6ANoCEdAqEsCQDFId3V9lChoBkdAbe1EOy3TeGgHTVgBaAhHQKhLIDhcZ+B1fZQoaAZHQG2Yns1KoQ5oB00tAWgIR0CoS+GyX2M9dX2UKGgGR0BxCrpaA4GVaAdNNAFoCEdAqExLaZhKDnV9lChoBkdANAT4pMHryGgHTQcBaAhHQKhMykE9t/F1fZQoaAZHwDljBnBciW5oB00LAWgIR0CoTpcpkPMCdX2UKGgGR0BvRIw7DEWJaAdNUQFoCEdAqE+Gw9q1xHV9lChoBkfAH4YLb5/LDGgHTS4BaAhHQKhP2xu89Oh1fZQoaAZHQGvuLdepn6FoB01nAWgIR0CoT+3solUqdX2UKGgGR0BwiTgTAWSEaAdNiAFoCEdAqFBPFDOTq3V9lChoBkdAcCVN3GGVRmgHTSQBaAhHQKhRJIPsiSt1fZQoaAZHQG6BPrnkkrxoB001AWgIR0CoUWZZr56/dX2UKGgGR0BpTUYyfthNaAdNMAFoCEdAqFPIbIcR2HV9lChoBkdAVJaSKWLP2WgHTegDaAhHQKhT2r/82rJ1fZQoaAZHQFrZI/qxC6ZoB03oA2gIR0CoVWNNahYedX2UKGgGR0A1mIOpbUw0aAdNIQFoCEdAqFfyKLsKLXVlLg==" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 310, "observation_space": { ":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [ 8 ], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": { ":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" } }