File size: 2,036 Bytes
7dce8f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-qmsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-qmsum

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4617
- Rouge1: 27.6423
- Rouge2: 8.5163
- Rougel: 23.1505

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|
| 3.3956        | 1.0   | 126  | 3.5354          | 27.6519 | 8.0746 | 23.1321 |
| 3.407         | 2.0   | 252  | 3.5115          | 27.4959 | 8.1111 | 23.1004 |
| 3.36          | 3.0   | 378  | 3.4898          | 27.7611 | 8.3366 | 23.1863 |
| 3.3032        | 4.0   | 504  | 3.4804          | 27.5676 | 8.2376 | 23.1387 |
| 3.2602        | 5.0   | 630  | 3.4727          | 28.1638 | 8.6819 | 23.4878 |
| 3.258         | 6.0   | 756  | 3.4644          | 27.8802 | 8.5634 | 23.3815 |
| 3.2167        | 7.0   | 882  | 3.4626          | 27.649  | 8.5533 | 23.2101 |
| 3.203         | 8.0   | 1008 | 3.4617          | 27.6423 | 8.5163 | 23.1505 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1