update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,12 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
4 |
model-index:
|
5 |
- name: patentClassfication2
|
6 |
results: []
|
@@ -11,7 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
11 |
|
12 |
# patentClassfication2
|
13 |
|
14 |
-
This model
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
## Model description
|
17 |
|
@@ -30,17 +42,24 @@ More information needed
|
|
30 |
### Training hyperparameters
|
31 |
|
32 |
The following hyperparameters were used during training:
|
33 |
-
- learning_rate:
|
34 |
- train_batch_size: 8
|
35 |
- eval_batch_size: 8
|
36 |
-
- seed:
|
37 |
-
- gradient_accumulation_steps: 8
|
38 |
-
- total_train_batch_size: 64
|
39 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
- lr_scheduler_type: cosine
|
41 |
- lr_scheduler_warmup_ratio: 0.1
|
42 |
-
- lr_scheduler_warmup_steps:
|
43 |
-
- num_epochs:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
### Framework versions
|
46 |
|
|
|
1 |
---
|
2 |
+
base_model: allenai/scibert_scivocab_uncased
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
model-index:
|
11 |
- name: patentClassfication2
|
12 |
results: []
|
|
|
17 |
|
18 |
# patentClassfication2
|
19 |
|
20 |
+
This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6263
|
23 |
+
- Accuracy: 0.6572
|
24 |
+
- F1: 0.6151
|
25 |
+
- Precision: 0.6966
|
26 |
+
- Recall: 0.5507
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2.54241e-05
|
46 |
- train_batch_size: 8
|
47 |
- eval_batch_size: 8
|
48 |
+
- seed: 41
|
|
|
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: cosine
|
51 |
- lr_scheduler_warmup_ratio: 0.1
|
52 |
+
- lr_scheduler_warmup_steps: 24
|
53 |
+
- num_epochs: 3
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
59 |
+
| 0.6346 | 1.0 | 4438 | 0.6263 | 0.6572 | 0.6151 | 0.6966 | 0.5507 |
|
60 |
+
| 0.5796 | 2.0 | 8876 | 0.6388 | 0.6758 | 0.6833 | 0.6646 | 0.7030 |
|
61 |
+
| 0.5268 | 3.0 | 13314 | 0.6567 | 0.6715 | 0.6833 | 0.6565 | 0.7123 |
|
62 |
+
|
63 |
|
64 |
### Framework versions
|
65 |
|