update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
base_model: distilbert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
@@ -18,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# patentClassfication2
|
20 |
|
21 |
-
This model is a fine-tuned version of [
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Precision: 0.
|
27 |
-
- Recall: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -43,30 +42,22 @@ More information needed
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
-
- learning_rate:
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 40
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: cosine
|
52 |
- lr_scheduler_warmup_ratio: 0.1
|
53 |
-
- num_epochs:
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step
|
58 |
-
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.4785 | 4.0 | 8884 | 0.8592 | 0.6256 | 0.6131 | 0.6376 | 0.5905 |
|
63 |
-
| 0.3792 | 5.0 | 11105 | 0.9728 | 0.6207 | 0.6098 | 0.6310 | 0.5901 |
|
64 |
-
| 0.2839 | 6.0 | 13326 | 1.0226 | 0.6083 | 0.6212 | 0.6041 | 0.6394 |
|
65 |
-
| 0.2211 | 7.0 | 15547 | 1.6336 | 0.6145 | 0.6067 | 0.6223 | 0.5919 |
|
66 |
-
| 0.1756 | 8.0 | 17768 | 1.8340 | 0.6052 | 0.5951 | 0.6139 | 0.5773 |
|
67 |
-
| 0.1451 | 9.0 | 19989 | 2.0495 | 0.6078 | 0.5980 | 0.6165 | 0.5807 |
|
68 |
-
| 0.1147 | 10.0 | 22210 | 2.3889 | 0.6128 | 0.6128 | 0.6158 | 0.6098 |
|
69 |
-
| 0.0983 | 11.0 | 24431 | 2.4921 | 0.6119 | 0.6132 | 0.6141 | 0.6123 |
|
70 |
|
71 |
|
72 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
base_model: allenai/scibert_scivocab_uncased
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
|
|
17 |
|
18 |
# patentClassfication2
|
19 |
|
20 |
+
This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6359
|
23 |
+
- Accuracy: 0.655
|
24 |
+
- F1: 0.6955
|
25 |
+
- Precision: 0.6304
|
26 |
+
- Recall: 0.7756
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1.939963376695812e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
- seed: 40
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: cosine
|
51 |
- lr_scheduler_warmup_ratio: 0.1
|
52 |
+
- num_epochs: 3
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
+
| 0.6809 | 1.0 | 500 | 0.6729 | 0.625 | 0.5541 | 0.6997 | 0.4587 |
|
59 |
+
| 0.6004 | 2.0 | 1000 | 0.6359 | 0.655 | 0.6955 | 0.6304 | 0.7756 |
|
60 |
+
| 0.4696 | 3.0 | 1500 | 0.6658 | 0.675 | 0.6919 | 0.6673 | 0.7185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|