eclec commited on
Commit
d5068f1
·
1 Parent(s): 009f8f4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -25
README.md CHANGED
@@ -1,6 +1,5 @@
1
  ---
2
- license: apache-2.0
3
- base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -18,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # patentClassfication2
20
 
21
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.6329
24
- - Accuracy: 0.6441
25
- - F1: 0.6528
26
- - Precision: 0.6402
27
- - Recall: 0.6658
28
 
29
  ## Model description
30
 
@@ -43,30 +42,22 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 5.310370197342976e-05
47
- - train_batch_size: 16
48
- - eval_batch_size: 16
49
  - seed: 40
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: cosine
52
  - lr_scheduler_warmup_ratio: 0.1
53
- - num_epochs: 11
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
- |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
- | 0.652 | 1.0 | 2221 | 0.6470 | 0.6087 | 0.5218 | 0.6759 | 0.4249 |
60
- | 0.6283 | 2.0 | 4442 | 0.6329 | 0.6441 | 0.6528 | 0.6402 | 0.6658 |
61
- | 0.5689 | 3.0 | 6663 | 0.6334 | 0.6371 | 0.6788 | 0.6112 | 0.7631 |
62
- | 0.4785 | 4.0 | 8884 | 0.8592 | 0.6256 | 0.6131 | 0.6376 | 0.5905 |
63
- | 0.3792 | 5.0 | 11105 | 0.9728 | 0.6207 | 0.6098 | 0.6310 | 0.5901 |
64
- | 0.2839 | 6.0 | 13326 | 1.0226 | 0.6083 | 0.6212 | 0.6041 | 0.6394 |
65
- | 0.2211 | 7.0 | 15547 | 1.6336 | 0.6145 | 0.6067 | 0.6223 | 0.5919 |
66
- | 0.1756 | 8.0 | 17768 | 1.8340 | 0.6052 | 0.5951 | 0.6139 | 0.5773 |
67
- | 0.1451 | 9.0 | 19989 | 2.0495 | 0.6078 | 0.5980 | 0.6165 | 0.5807 |
68
- | 0.1147 | 10.0 | 22210 | 2.3889 | 0.6128 | 0.6128 | 0.6158 | 0.6098 |
69
- | 0.0983 | 11.0 | 24431 | 2.4921 | 0.6119 | 0.6132 | 0.6141 | 0.6123 |
70
 
71
 
72
  ### Framework versions
 
1
  ---
2
+ base_model: allenai/scibert_scivocab_uncased
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
 
17
 
18
  # patentClassfication2
19
 
20
+ This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.6359
23
+ - Accuracy: 0.655
24
+ - F1: 0.6955
25
+ - Precision: 0.6304
26
+ - Recall: 0.7756
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 1.939963376695812e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
  - seed: 40
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: cosine
51
  - lr_scheduler_warmup_ratio: 0.1
52
+ - num_epochs: 3
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.6809 | 1.0 | 500 | 0.6729 | 0.625 | 0.5541 | 0.6997 | 0.4587 |
59
+ | 0.6004 | 2.0 | 1000 | 0.6359 | 0.655 | 0.6955 | 0.6304 | 0.7756 |
60
+ | 0.4696 | 3.0 | 1500 | 0.6658 | 0.675 | 0.6919 | 0.6673 | 0.7185 |
 
 
 
 
 
 
 
 
61
 
62
 
63
  ### Framework versions