eclec commited on
Commit
e6c53bf
·
1 Parent(s): d42162a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -16
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: allenai/scibert_scivocab_uncased
3
  tags:
4
  - generated_from_trainer
5
  metrics:
@@ -17,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # patentClassfication2
19
 
20
- This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.6329
23
- - Accuracy: 0.6513
24
- - F1: 0.6099
25
- - Precision: 0.6941
26
- - Recall: 0.5438
27
 
28
  ## Model description
29
 
@@ -42,23 +42,24 @@ More information needed
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
- - learning_rate: 2.54241e-05
46
  - train_batch_size: 8
47
  - eval_batch_size: 8
48
- - seed: 41
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: cosine
51
  - lr_scheduler_warmup_ratio: 0.1
52
- - lr_scheduler_warmup_steps: 24
53
- - num_epochs: 3
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
- |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
- | 0.635 | 1.0 | 4438 | 0.6329 | 0.6513 | 0.6099 | 0.6941 | 0.5438 |
60
- | 0.5772 | 2.0 | 8876 | 0.6393 | 0.6721 | 0.6831 | 0.6624 | 0.7050 |
61
- | 0.5355 | 3.0 | 13314 | 0.6558 | 0.6683 | 0.6768 | 0.6613 | 0.6931 |
 
62
 
63
 
64
  ### Framework versions
 
1
  ---
2
+ base_model: allenai/longformer-large-4096
3
  tags:
4
  - generated_from_trainer
5
  metrics:
 
17
 
18
  # patentClassfication2
19
 
20
+ This model is a fine-tuned version of [allenai/longformer-large-4096](https://huggingface.co/allenai/longformer-large-4096) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.6395
23
+ - Accuracy: 0.645
24
+ - F1: 0.6764
25
+ - Precision: 0.6214
26
+ - Recall: 0.742
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 7.224533222600416e-06
46
  - train_batch_size: 8
47
  - eval_batch_size: 8
48
+ - seed: 3
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: cosine
51
  - lr_scheduler_warmup_ratio: 0.1
52
+ - lr_scheduler_warmup_steps: 371
53
+ - num_epochs: 4
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
+ | 0.6917 | 1.0 | 500 | 0.6714 | 0.595 | 0.64 | 0.576 | 0.72 |
60
+ | 0.6577 | 2.0 | 1000 | 0.6395 | 0.645 | 0.6764 | 0.6214 | 0.742 |
61
+ | 0.536 | 3.0 | 1500 | 0.6535 | 0.675 | 0.6531 | 0.7002 | 0.612 |
62
+ | 0.4025 | 4.0 | 2000 | 0.6808 | 0.686 | 0.6879 | 0.6838 | 0.692 |
63
 
64
 
65
  ### Framework versions