update model card README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
base_model: allenai/scibert_scivocab_uncased
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
@@ -17,13 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# patentClassfication2
|
19 |
|
20 |
-
This model
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Accuracy: 0.
|
24 |
-
- F1: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -42,22 +41,30 @@ More information needed
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
-
- learning_rate: 1.
|
46 |
- train_batch_size: 8
|
47 |
- eval_batch_size: 8
|
48 |
- seed: 40
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: cosine
|
51 |
- lr_scheduler_warmup_ratio: 0.1
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
-
| Training Loss | Epoch | Step
|
57 |
-
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
metrics:
|
|
|
16 |
|
17 |
# patentClassfication2
|
18 |
|
19 |
+
This model was trained from scratch on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6212
|
22 |
+
- Accuracy: 0.6754
|
23 |
+
- F1: 0.7015
|
24 |
+
- Precision: 0.6475
|
25 |
+
- Recall: 0.7653
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
41 |
### Training hyperparameters
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 1.939963e-05
|
45 |
- train_batch_size: 8
|
46 |
- eval_batch_size: 8
|
47 |
- seed: 40
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: cosine
|
50 |
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 11
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
57 |
+
| 0.6217 | 1.0 | 4438 | 0.6251 | 0.6405 | 0.5425 | 0.7414 | 0.4278 |
|
58 |
+
| 0.5918 | 2.0 | 8876 | 0.6212 | 0.6754 | 0.7015 | 0.6475 | 0.7653 |
|
59 |
+
| 0.5097 | 3.0 | 13314 | 0.8241 | 0.6748 | 0.6827 | 0.6645 | 0.7020 |
|
60 |
+
| 0.4099 | 4.0 | 17752 | 1.0772 | 0.6685 | 0.6810 | 0.6542 | 0.7102 |
|
61 |
+
| 0.3342 | 5.0 | 22190 | 1.7059 | 0.6550 | 0.6645 | 0.6446 | 0.6857 |
|
62 |
+
| 0.216 | 6.0 | 26628 | 2.1970 | 0.6503 | 0.6529 | 0.6459 | 0.6600 |
|
63 |
+
| 0.1214 | 7.0 | 31066 | 2.7215 | 0.6498 | 0.6642 | 0.6360 | 0.6950 |
|
64 |
+
| 0.0548 | 8.0 | 35504 | 2.9805 | 0.6515 | 0.6557 | 0.6458 | 0.6658 |
|
65 |
+
| 0.0356 | 9.0 | 39942 | 3.2608 | 0.6541 | 0.6560 | 0.6503 | 0.6618 |
|
66 |
+
| 0.0284 | 10.0 | 44380 | 3.3810 | 0.6513 | 0.6548 | 0.6461 | 0.6638 |
|
67 |
+
| 0.0186 | 11.0 | 48818 | 3.3967 | 0.6514 | 0.6576 | 0.6440 | 0.6717 |
|
68 |
|
69 |
|
70 |
### Framework versions
|