eclec commited on
Commit
e90c28c
·
1 Parent(s): 584038b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -14
README.md CHANGED
@@ -1,5 +1,4 @@
1
  ---
2
- base_model: allenai/scibert_scivocab_uncased
3
  tags:
4
  - generated_from_trainer
5
  metrics:
@@ -17,13 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # patentClassfication2
19
 
20
- This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.6359
23
- - Accuracy: 0.655
24
- - F1: 0.6955
25
- - Precision: 0.6304
26
- - Recall: 0.7756
27
 
28
  ## Model description
29
 
@@ -42,22 +41,30 @@ More information needed
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
- - learning_rate: 1.939963376695812e-05
46
  - train_batch_size: 8
47
  - eval_batch_size: 8
48
  - seed: 40
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: cosine
51
  - lr_scheduler_warmup_ratio: 0.1
52
- - num_epochs: 3
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
- | 0.6809 | 1.0 | 500 | 0.6729 | 0.625 | 0.5541 | 0.6997 | 0.4587 |
59
- | 0.6004 | 2.0 | 1000 | 0.6359 | 0.655 | 0.6955 | 0.6304 | 0.7756 |
60
- | 0.4696 | 3.0 | 1500 | 0.6658 | 0.675 | 0.6919 | 0.6673 | 0.7185 |
 
 
 
 
 
 
 
 
61
 
62
 
63
  ### Framework versions
 
1
  ---
 
2
  tags:
3
  - generated_from_trainer
4
  metrics:
 
16
 
17
  # patentClassfication2
18
 
19
+ This model was trained from scratch on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.6212
22
+ - Accuracy: 0.6754
23
+ - F1: 0.7015
24
+ - Precision: 0.6475
25
+ - Recall: 0.7653
26
 
27
  ## Model description
28
 
 
41
  ### Training hyperparameters
42
 
43
  The following hyperparameters were used during training:
44
+ - learning_rate: 1.939963e-05
45
  - train_batch_size: 8
46
  - eval_batch_size: 8
47
  - seed: 40
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: cosine
50
  - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 11
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 0.6217 | 1.0 | 4438 | 0.6251 | 0.6405 | 0.5425 | 0.7414 | 0.4278 |
58
+ | 0.5918 | 2.0 | 8876 | 0.6212 | 0.6754 | 0.7015 | 0.6475 | 0.7653 |
59
+ | 0.5097 | 3.0 | 13314 | 0.8241 | 0.6748 | 0.6827 | 0.6645 | 0.7020 |
60
+ | 0.4099 | 4.0 | 17752 | 1.0772 | 0.6685 | 0.6810 | 0.6542 | 0.7102 |
61
+ | 0.3342 | 5.0 | 22190 | 1.7059 | 0.6550 | 0.6645 | 0.6446 | 0.6857 |
62
+ | 0.216 | 6.0 | 26628 | 2.1970 | 0.6503 | 0.6529 | 0.6459 | 0.6600 |
63
+ | 0.1214 | 7.0 | 31066 | 2.7215 | 0.6498 | 0.6642 | 0.6360 | 0.6950 |
64
+ | 0.0548 | 8.0 | 35504 | 2.9805 | 0.6515 | 0.6557 | 0.6458 | 0.6658 |
65
+ | 0.0356 | 9.0 | 39942 | 3.2608 | 0.6541 | 0.6560 | 0.6503 | 0.6618 |
66
+ | 0.0284 | 10.0 | 44380 | 3.3810 | 0.6513 | 0.6548 | 0.6461 | 0.6638 |
67
+ | 0.0186 | 11.0 | 48818 | 3.3967 | 0.6514 | 0.6576 | 0.6440 | 0.6717 |
68
 
69
 
70
  ### Framework versions