--- license: apache-2.0 base_model: alamsher/wav2vec2-large-xlsr-53-common-voice-sw tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-large-xlsr-mvc-swahili results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: sw split: test args: sw metrics: - name: Wer type: wer value: 0.32237526397075045 --- # wav2vec2-large-xlsr-mvc-swahili This model is a fine-tuned version of [alamsher/wav2vec2-large-xlsr-53-common-voice-sw](https://huggingface.co/alamsher/wav2vec2-large-xlsr-53-common-voice-sw) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.3224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.17 | 100 | inf | 1.0 | | No log | 0.34 | 200 | inf | 1.0 | | No log | 0.5 | 300 | inf | 0.3420 | | 3.3446 | 0.67 | 400 | inf | 0.3431 | | 3.3446 | 0.84 | 500 | inf | 0.3500 | | 3.3446 | 1.01 | 600 | inf | 0.3433 | | 3.3446 | 1.17 | 700 | inf | 0.3347 | | 0.1975 | 1.34 | 800 | inf | 0.3340 | | 0.1975 | 1.51 | 900 | inf | 0.3307 | | 0.1975 | 1.68 | 1000 | inf | 0.3233 | | 0.1975 | 1.84 | 1100 | inf | 0.3224 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1