distil-whisper-large-v3-it / create_student_model.py
edobobo's picture
Saving train state of step 1000
5903dd2 verified
raw
history blame
7.97 kB
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Initialise a student Whisper model from a pre-trained teacher model for
teacher-student distillation.
"""
import argparse
import copy
import logging
import numpy as np
import torch
from transformers import GenerationConfig, WhisperForConditionalGeneration, WhisperProcessor
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(
description="Initialise a student Whisper model from a teacher model, copying the relevant layer weights and adjusting the processor as necessary."
)
parser.add_argument(
"--teacher_checkpoint",
type=str,
required=True,
help="The HF Hub ID of the teacher checkpoint.",
)
parser.add_argument(
"--subfolder",
type=str,
default="",
help="In case the relevant teacher weights are located inside a subfolder of the model repo on huggingface.co, you "
"can specify the folder name here.",
)
parser.add_argument(
"--encoder_layers",
type=int,
default=None,
help="Number of encoder layers to use in the student model. Defaults to all layers from the teacher.",
)
parser.add_argument(
"--decoder_layers",
type=int,
default=2,
help="Number of decoder layers to use in the student model. Defaults to 2 layers.",
)
parser.add_argument(
"--save_dir",
type=str,
required=True,
help="Where to save the student weights and processor.",
)
parser.add_argument(
"--push_to_hub",
type=bool,
required=False,
default=False,
help="Whether to push the student weights and processor to the Hub.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="Where to store the pretrained models downloaded from huggingface.co",
)
args = parser.parse_args()
return args
def init_student_model_from_teacher(
teacher_checkpoint,
encoder_layers=None,
decoder_layers=2,
save_dir=None,
push_to_hub=None,
cache_dir=None,
subfolder="",
):
teacher_model = WhisperForConditionalGeneration.from_pretrained(
teacher_checkpoint,
cache_dir=cache_dir,
subfolder=subfolder,
low_cpu_mem_usage=True,
)
processor = WhisperProcessor.from_pretrained(teacher_checkpoint)
generation_config = GenerationConfig.from_pretrained(teacher_checkpoint)
generation_config.forced_decoder_ids = None
teacher_config = teacher_model.config
teacher_encoder_layers = teacher_config.encoder_layers
teacher_decoder_layers = teacher_config.decoder_layers
student_config = copy.deepcopy(teacher_config)
student_config.update(
{
"encoder_layers": encoder_layers if encoder_layers is not None else teacher_encoder_layers,
"decoder_layers": decoder_layers,
}
)
encoder_mapping = np.linspace(0, teacher_encoder_layers - 1, student_config.encoder_layers, dtype=int)
encoder_mapping[-1] = teacher_encoder_layers - 1
encoder_map = {}
for student_layer, teacher_layer in enumerate(encoder_mapping):
encoder_map[teacher_layer] = student_layer
decoder_mapping = np.linspace(0, teacher_decoder_layers - 1, student_config.decoder_layers, dtype=int)
decoder_mapping[-1] = teacher_decoder_layers - 1
decoder_map = {}
for student_layer, teacher_layer in enumerate(decoder_mapping):
decoder_map[teacher_layer] = student_layer
# init the student params from the teacher model
student_model = WhisperForConditionalGeneration(student_config)
missing_keys, unexpected_keys = student_model.load_state_dict(teacher_model.state_dict(), strict=False)
if len(missing_keys) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for WhisperForConditionalGeneration. \n"
f"Missing key(s) in state_dict: {missing_keys}"
)
if decoder_layers == teacher_decoder_layers:
decoder_keys = [key for key in unexpected_keys if "model.decoder.layers" in key]
if len(decoder_keys) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for WhisperForConditionalGeneration. \n"
f"Unexpected key(s) in state_dict: {decoder_keys}"
)
if encoder_layers == teacher_encoder_layers:
encoder_keys = [key for key in unexpected_keys if "model.encoder.layers" in key]
if len(encoder_keys) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for WhisperForConditionalGeneration. \n"
f"Unexpected key(s) in state_dict: {encoder_keys}"
)
for layer in range(teacher_decoder_layers):
if layer in decoder_map:
# re-introduce pre-defined layers from the teacher
student_model.model.decoder.layers[decoder_map[layer]].load_state_dict(
teacher_model.model.decoder.layers[layer].state_dict()
)
if encoder_layers is not None:
for layer in range(teacher_encoder_layers):
if layer in encoder_map:
# re-introduce pre-defined layers from the teacher
student_model.model.encoder.layers[encoder_map[layer]].load_state_dict(
teacher_model.model.encoder.layers[layer].state_dict()
)
# remove the teacher params and model
del teacher_model
# save the converted weights and model
if save_dir is not None:
student_model.save_pretrained(save_dir)
# we also need to correctly save the processor and generation config
processor.save_pretrained(save_dir)
generation_config.save_pretrained(save_dir)
# check we can do a forward pass with the saved model - first load the weights and processor
logger.info("Checking we can load the saved model...")
student_model = WhisperForConditionalGeneration.from_pretrained(
save_dir,
low_cpu_mem_usage=True,
)
processor = WhisperProcessor.from_pretrained(save_dir)
# define some random inputs
input_features = processor(np.ones(16000), sampling_rate=16000, return_tensors="pt").input_features
decoder_start_token_id = student_model.config.decoder_start_token_id
decoder_input_ids = torch.ones((input_features.shape[0], 1), dtype=torch.long) * decoder_start_token_id
# do a forward pass - outputs will be gibberish for the initialised model so we can't check them
# but we make can sure the model runs as expected
logger.info("Checking we can run the converted model forward...")
_ = student_model(input_features, decoder_input_ids=decoder_input_ids).logits
logger.info("Conversion successful!")
if push_to_hub:
student_model.push_to_hub(save_dir)
processor.push_to_hub(save_dir)
generation_config.push_to_hub(save_dir)
if __name__ == "__main__":
args = parse_args()
init_student_model_from_teacher(
teacher_checkpoint=args.teacher_checkpoint,
encoder_layers=args.encoder_layers,
decoder_layers=args.decoder_layers,
save_dir=args.save_dir,
push_to_hub=args.push_to_hub,
cache_dir=args.cache_dir,
subfolder=args.subfolder,
)