Eduardo Gonzalez Ponferrada
commited on
Commit
·
99b5a70
1
Parent(s):
334b041
Add wav2vec model with LM
Browse files- README.md +9 -0
- added_tokens.json +1 -0
- alphabet.json +1 -0
- common_voice_es_test_eval_results.txt +2 -0
- config.json +108 -0
- eval.py +131 -0
- language_model/5gram.bin +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +0 -0
- log_common_voice_es_test_predictions.txt +0 -0
- log_common_voice_es_test_targets.txt +0 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- es
|
4 |
+
tags:
|
5 |
+
- es
|
6 |
+
- robust-speech-event
|
7 |
+
---
|
8 |
+
|
9 |
+
# wav2vec2-xls-r-300m-36-tokens-es
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 36, "</s>": 37}
|
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "\u00e1", "\u00e9", "\u00ed", "\u00f1", "\u00f3", "\u00fa", "\u00fc", "\u2047", "", "<s>", "</s>"], "is_bpe": false}
|
common_voice_es_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.15404152388631323
|
2 |
+
CER: 0.04559264378545272
|
config.json
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"gradient_checkpointing": false,
|
56 |
+
"hidden_act": "gelu",
|
57 |
+
"hidden_dropout": 0.0,
|
58 |
+
"hidden_size": 1024,
|
59 |
+
"initializer_range": 0.02,
|
60 |
+
"intermediate_size": 4096,
|
61 |
+
"layer_norm_eps": 1e-05,
|
62 |
+
"layerdrop": 0.0,
|
63 |
+
"mask_feature_length": 10,
|
64 |
+
"mask_feature_min_masks": 0,
|
65 |
+
"mask_feature_prob": 0.0,
|
66 |
+
"mask_time_length": 10,
|
67 |
+
"mask_time_min_masks": 2,
|
68 |
+
"mask_time_prob": 0.05,
|
69 |
+
"model_type": "wav2vec2",
|
70 |
+
"num_adapter_layers": 3,
|
71 |
+
"num_attention_heads": 16,
|
72 |
+
"num_codevector_groups": 2,
|
73 |
+
"num_codevectors_per_group": 320,
|
74 |
+
"num_conv_pos_embedding_groups": 16,
|
75 |
+
"num_conv_pos_embeddings": 128,
|
76 |
+
"num_feat_extract_layers": 7,
|
77 |
+
"num_hidden_layers": 24,
|
78 |
+
"num_negatives": 100,
|
79 |
+
"output_hidden_size": 1024,
|
80 |
+
"pad_token_id": 35,
|
81 |
+
"proj_codevector_dim": 768,
|
82 |
+
"tdnn_dilation": [
|
83 |
+
1,
|
84 |
+
2,
|
85 |
+
3,
|
86 |
+
1,
|
87 |
+
1
|
88 |
+
],
|
89 |
+
"tdnn_dim": [
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
512,
|
94 |
+
1500
|
95 |
+
],
|
96 |
+
"tdnn_kernel": [
|
97 |
+
5,
|
98 |
+
3,
|
99 |
+
3,
|
100 |
+
1,
|
101 |
+
1
|
102 |
+
],
|
103 |
+
"torch_dtype": "float32",
|
104 |
+
"transformers_version": "4.16.0.dev0",
|
105 |
+
"use_weighted_layer_sum": false,
|
106 |
+
"vocab_size": 38,
|
107 |
+
"xvector_output_dim": 512
|
108 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor
|
4 |
+
import re
|
5 |
+
import argparse
|
6 |
+
import unicodedata
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
|
10 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
11 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
12 |
+
|
13 |
+
log_outputs = args.log_outputs
|
14 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
15 |
+
|
16 |
+
# load metric
|
17 |
+
wer = load_metric("wer")
|
18 |
+
cer = load_metric("cer")
|
19 |
+
|
20 |
+
# compute metrics
|
21 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
23 |
+
|
24 |
+
# print & log results
|
25 |
+
result_str = (
|
26 |
+
f"WER: {wer_result}\n"
|
27 |
+
f"CER: {cer_result}"
|
28 |
+
)
|
29 |
+
print(result_str)
|
30 |
+
|
31 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
32 |
+
f.write(result_str)
|
33 |
+
|
34 |
+
# log all results in text file. Possibly interesting for analysis
|
35 |
+
if log_outputs is not None:
|
36 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
37 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
38 |
+
|
39 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
40 |
+
|
41 |
+
# mapping function to write output
|
42 |
+
def write_to_file(batch, i):
|
43 |
+
p.write(f"{i}" + "\n")
|
44 |
+
p.write(batch["prediction"] + "\n")
|
45 |
+
t.write(f"{i}" + "\n")
|
46 |
+
t.write(batch["target"] + "\n")
|
47 |
+
|
48 |
+
result.map(write_to_file, with_indices=True)
|
49 |
+
|
50 |
+
|
51 |
+
def normalize_text(text: str) -> str:
|
52 |
+
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
53 |
+
|
54 |
+
# chars_to_ignore_regex = '[,?.!\-\;\:\"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
55 |
+
chars_to_ignore_regex = ',\?\¿\.\!\¡\;\;\:\""\%\"\�\ʿ\·\჻\~\՞\؟\،\।\॥\«\»\„\“\”\「\」\‘\’\《\》\(\)\[\]\{\}\=\`\_\+\<\>\…\–\°\´\ʾ\‹\›\©\®\—\→\。\、\﹂\﹁\‧\~\﹏\,\{\}\(\)\[\]\【\】\‥\〽\『\』\〝\〟\⟨\⟩\〜\:\!\?\♪\؛\/\\\º\−\^\ʻ\ˆ\≪\≫'
|
56 |
+
chars_to_ignore_regex += "$\&\'\-\|\¨\ª\ß\à\â\ã\ä\å\æ\ç\ê\ë\ì\î\ï\ð\ò\ô\õ\ö\ø\ù\û\ý\þ\ā\ă\ć\č\đ\ė\ę\ě\ğ\ī\ı\ł\ń\ō\ŏ\ő\œ\ř\ś\ş\š\ū\ź\ż\ž\ș\ț\ə\ʷ\ʽ\ː\́\̇\ϙ\а\б\в\г\д\е\и\й\к\л\н\о\п\р\с\т\ч\ш\ы\ь\ю\я\ё\ү\ө\ְ\ִ\ֵ\ָ\ֹ\ּ\ב\ה\ו\י\כ\ל\ם\מ\נ\ס\ק\ר\ש\ת\ا\ب\ة\د\ذ\ر\ل\م\ه\و\ي\ਆ\ਘ\ਤ\ਨ\ਮ\ਸ\ਾ\ਿ\ੰ\ṁ\ṃ\ṇ\ồ\‐\‑\―\し\の\ひ\ら\ゴ\ヒ\ミ\ム\ラ\㓁\口\周\夷\山\戌\日\本\比\毵\消\生\申\真\箱\网\罒\罓\肋\肌\背\良\蝦\鮓\鮨\fi\$\&\'\-\|\¨\ª\ß\à\â\ã\ä\å\æ\ç\ê\ë\ì\î\ï\ð\ò\ô\õ\ö\ø\ù\û\ý\þ\ā\ă\ć\č\đ\ė\ę\ě\ğ\ī\ı\ł\ń\ō\ŏ\ő\œ\ř\ś\ş\š\ū\ź\ż\ž\ș\ț\ə\ʷ\ʽ\ː\́\̇\ϙ\а\б\в\г\д\е\и\й\к\л\н\о\п\р\с\т\ч\ш\ы\ь\ю\я\ё\ү\ө\ְ\ִ\ֵ\ָ\ֹ\ּ\ב\ה\ו\י\כ\ל\ם\מ\נ\ס\ק\ר\ש\ת\ا\ب\ة\د\ذ\ر\ل\م\ه\و\ي\ਆ\ਘ\ਤ\ਨ\ਮ\ਸ\ਾ\ਿ\ੰ\ṁ\ṃ\ṇ\ồ\‐\‑\―\し\の\ひ\ら\ゴ\ヒ\ミ\ム\ラ\㓁\口\周\夷\山\戌\日\本\比\毵\消\生\申\真\箱\网\罒\罓\肋\肌\背\良\蝦\鮓\鮨\fi\"
|
57 |
+
chars_to_ignore_regex = "[" + chars_to_ignore_regex + "]"
|
58 |
+
|
59 |
+
text = text.lower()
|
60 |
+
# normalize non-standard (stylized) unicode characters
|
61 |
+
text = unicodedata.normalize('NFKC', text)
|
62 |
+
# remove punctuation
|
63 |
+
text = re.sub(chars_to_ignore_regex, "", text)
|
64 |
+
|
65 |
+
# Let's also make sure we split on all kinds of newlines, spaces, etc...
|
66 |
+
text = " ".join(text.split())
|
67 |
+
|
68 |
+
return text
|
69 |
+
|
70 |
+
|
71 |
+
def main(args):
|
72 |
+
# load dataset
|
73 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
74 |
+
|
75 |
+
# for testing: only process the first two examples as a test
|
76 |
+
# dataset = dataset.select(range(10))
|
77 |
+
|
78 |
+
# load processor
|
79 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
80 |
+
sampling_rate = feature_extractor.sampling_rate
|
81 |
+
|
82 |
+
# resample audio
|
83 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
84 |
+
|
85 |
+
# load eval pipeline
|
86 |
+
# asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
87 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=0)
|
88 |
+
|
89 |
+
# map function to decode audio
|
90 |
+
def map_to_pred(batch):
|
91 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
92 |
+
|
93 |
+
batch["prediction"] = prediction["text"]
|
94 |
+
batch["target"] = normalize_text(batch["sentence"])
|
95 |
+
return batch
|
96 |
+
|
97 |
+
# run inference on all examples
|
98 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
99 |
+
|
100 |
+
# compute and log_results
|
101 |
+
# do not change function below
|
102 |
+
log_results(result, args)
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
parser = argparse.ArgumentParser()
|
107 |
+
|
108 |
+
parser.add_argument(
|
109 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
116 |
+
)
|
117 |
+
parser.add_argument(
|
118 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
128 |
+
)
|
129 |
+
args = parser.parse_args()
|
130 |
+
|
131 |
+
main(args)
|
language_model/5gram.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9beb443cf2aab7939c2e484b1bdbbe03f57827dd0068db76a7601bf948656ae6
|
3 |
+
size 111822055
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_common_voice_es_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_common_voice_es_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e21c7d862ecf7b5327f2985887bca39fe968d49ea51449eed86bccb9b46dd6aa
|
3 |
+
size 1262079473
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "edugp/wav2vec2-xls-r-300m-36-tokens-es", "tokenizer_class": "Wav2Vec2CTCTokenizer", "processor_class": "Wav2Vec2ProcessorWithLM"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7413e4b25523b52cee9dcbbc7b68c8bded63514be015752c5bda8705c9b1e0af
|
3 |
+
size 3055
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "á": 27, "é": 28, "í": 29, "ñ": 30, "ó": 31, "ú": 32, "ü": 33, "|": 0, "[UNK]": 34, "[PAD]": 35}
|