Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1538.63 +/- 176.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6c5213576c889eec200d5885aa311cb9bfa4a322045db78004ca195c4ebfcac
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2bfa443310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2bfa4433a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2bfa443430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2bfa4434c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2bfa443550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2bfa4435e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2bfa443670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2bfa443700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2bfa443790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2bfa443820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2bfa4438b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2bfa443940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2bfa444780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679200366265629480,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAASH1D7tISw/0mIiPxdVvT6Hjey+PSoQP7HpDb8lSRG/xwRFvyLLED9kJ2k/KgWZPhImIz8sYg0+NOU6P29rpDzym1U+0DG+vm3/oL6IdJk+nsJfv+yeDD1is98/c/fZvqDqPT+Lv+c+7CcCP/eRX78cDJQ/14KJvyVE8L7VhP8+p8/gvwXYqb/leau+woHVvgeGpj+zevO+9lsZP5Qttr12YgM/WaqzvifdVL3xMEu/U4apvy6AIT2RQxC+wHiVP0aDkrynrRA/2kA5vncIbT+g6j0/i7/nPuwnAj/3kV+/qHRJP3ghgz2Wlwk/bIOMP9unw76uaZM/90xyv0q2t787kVw/zjGdP3XrTz+r4iG8ameRv46erD7dLh4/VymevTyREj58BBO/6heAvsf8hz+elFS/ZigJP4n6DL8CtizAoOo9P4u/5z7sJwI/95Ffv9n7gD8E4BE9kssGP+Jhzj6u67S/q4oNwKEyKL91xZu/gfCAP63Fhb93rK4+1lKLv6Jajb9rPAY9xQEcPiAk0j6l+aG/0fzwPluucz86ggi99qhcv7QBZr+mSUu+QOi8P/qJrL+Lv+c+cML7v/eRX7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADqHui2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaPy9PQAAAABjNfK/AAAAADKTKD0AAAAAUQD4PwAAAACaLQS+AAAAABjv5T8AAAAAvh7hPQAAAAC+Gfy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4PjCtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG8cCD4AAAAAIWbwvwAAAACEPCE9AAAAAOos4T8AAAAAmL+svQAAAABDHPA/AAAAALXomD0AAAAADUjkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMEZIDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBMuw6+AAAAABIj378AAAAA/PdnPQAAAADo//g/AAAAAIA6Cr4AAAAACIjmPwAAAACyIyO9AAAAAK48+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFPpM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHChYvAAAAABNcPK/AAAAAOTNkj0AAAAAzj3wPwAAAABGiWE9AAAAAIx/+j8AAAAAm/tMvQAAAAD/Dfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVntmYjSoiMAWyUTegDjAF0lEdAqx8Mq8UVSHV9lChoBkdAkVSbD/EOy2gHTegDaAhHQKsiHYcvM8p1fZQoaAZHQJVvg1baAWloB03oA2gIR0CrI/sajvd/dX2UKGgGR0CQgIxri2lVaAdN6ANoCEdAqyoquB+WnnV9lChoBkdAlh2/0yxiX2gHTegDaAhHQKssCf0VafV1fZQoaAZHQJdERuKoAGVoB03oA2gIR0CrLrvUrkKedX2UKGgGR0CJQM2+fywwaAdN6ANoCEdAqzCnAKv3anV9lChoBkdAk7OZXuE252gHTegDaAhHQKs4S7U5MlF1fZQoaAZHQJYB2JbdJrdoB03oA2gIR0CrOzgOSW7fdX2UKGgGR0CV0AMx46fbaAdN6ANoCEdAqz+MIeHSGHV9lChoBkdAl5+cAzYVZmgHTegDaAhHQKtBf49HMEB1fZQoaAZHQJV2WsXBP9FoB03oA2gIR0CrR7E/bCaadX2UKGgGR0CTt2/Yao/BaAdN6ANoCEdAq0mNSCOFQHV9lChoBkdAkcRwKfFrEmgHTegDaAhHQKtMQFyq+8J1fZQoaAZHQJJpHJPqLTBoB03oA2gIR0CrThYL9deIdX2UKGgGR0CTVdjcmBvraAdN6ANoCEdAq1SUYAKfF3V9lChoBkdAlu7HezlcQmgHTegDaAhHQKtXSkleF+N1fZQoaAZHQJavnxNIsiBoB03oA2gIR0CrW6NmUW2xdX2UKGgGR0CUNF8kUsWgaAdN6ANoCEdAq168V1wHaHV9lChoBkdAkvSzB68g6mgHTegDaAhHQKtk+SVW0Z51fZQoaAZHQJO5sMnZ00ZoB03oA2gIR0CrZr5SNwR5dX2UKGgGR0CUFIuuRs/IaAdN6ANoCEdAq2leVHFxXHV9lChoBkdAlch/p+tr9GgHTegDaAhHQKtrS7jDKo11fZQoaAZHQJF2RdhRZU1oB03oA2gIR0CrcVoBq9GrdX2UKGgGR0CN+KAQQL/kaAdN6ANoCEdAq3Nht+CsfnV9lChoBkdAlrbnVf/m1mgHTegDaAhHQKt3kNAC4jN1fZQoaAZHQJPtmSRr8BNoB03oA2gIR0CreqvAXVLBdX2UKGgGR0CRwfQ2/BWQaAdN6ANoCEdAq4IpMrVe8nV9lChoBkdAllBxbB42TGgHTegDaAhHQKuD5ATIvJ11fZQoaAZHQJjIEN8VpK1oB03oA2gIR0CrhoetKZlWdX2UKGgGR0CY879r433paAdN6ANoCEdAq4h8/r0J4XV9lChoBkdAmV58nZ00WWgHTegDaAhHQKuOhRXOnl51fZQoaAZHQJacCpHZsbhoB03oA2gIR0CrkEVV5rxidX2UKGgGR0CUNCZxrBTGaAdN6ANoCEdAq5NlH6MzdnV9lChoBkdAkcoZQP7N0WgHTegDaAhHQKuWN1pTMq11fZQoaAZHQJMK/EWIoE1oB03oA2gIR0Crn2CGFi8WdX2UKGgGR0CRR8OPeYUnaAdN6ANoCEdAq6EwWHk92XV9lChoBkdAkqQPiHZbp2gHTegDaAhHQKuj/+S8rZt1fZQoaAZHQJYyc0l7dBVoB03oA2gIR0CrpdIF/x2CdX2UKGgGR0CUIFF0gbIcaAdN6ANoCEdAq6vgvQF9r3V9lChoBkdAkg20mICU5mgHTegDaAhHQKutqCwr1/V1fZQoaAZHQJSdhYZEUj9oB03oA2gIR0CrsD2wu/UOdX2UKGgGR0CTOWIpH7P6aAdN6ANoCEdAq7I3CGetjnV9lChoBkdAkN40YbbUPWgHTegDaAhHQKu7yMBp5/t1fZQoaAZHQJBkuiaiKzloB03oA2gIR0Crvi1gH/tIdX2UKGgGR0CY4N1KGtZFaAdN6ANoCEdAq8DL+Haew3V9lChoBkdAkM0r876pHmgHTegDaAhHQKvCumtQsPJ1fZQoaAZHQJVJKuaF23doB03oA2gIR0CryNch1TzedX2UKGgGR0CVM5aUA1ejaAdN6ANoCEdAq8qgr+YMOXV9lChoBkdAlzNL4zrNW2gHTegDaAhHQKvNP0Qsf7t1fZQoaAZHQJXKMR28qWloB03oA2gIR0Crzy0gSvkjdX2UKGgGR0CVpeuJk5IZaAdN6ANoCEdAq9fNV/+bVnV9lChoBkdAlQI92cJ+lWgHTegDaAhHQKvasmUGFBZ1fZQoaAZHQIz5SnvUjLVoB03oA2gIR0Cr3lHCoCMhdX2UKGgGR0CShVld1MdtaAdN6ANoCEdAq+BEXxe9jHV9lChoBkdAlVmkHD766GgHTegDaAhHQKvmdZamoBJ1fZQoaAZHQJN7ZbUwztVoB03oA2gIR0Cr6Dy9du50dX2UKGgGR0CUihej2zv7aAdN6ANoCEdAq+r6++M6zXV9lChoBkdAlaTspXp4bGgHTegDaAhHQKvs2uX/o7p1fZQoaAZHQJlOX0yxiXpoB03oA2gIR0Cr8+5NwiqydX2UKGgGR0CXK1xbB42TaAdN6ANoCEdAq/a+IuXeFnV9lChoBkdAmAUVbzK9wmgHTegDaAhHQKv7PAUL2Ht1fZQoaAZHQJgdtNXYDkloB03oA2gIR0Cr/ZwPRRdhdX2UKGgGR0CWm2XAuZkTaAdN6ANoCEdArAO9DBuXNXV9lChoBkdAk2Jh5HEuQWgHTegDaAhHQKwFhWXkYGd1fZQoaAZHQJcgJ+jM3ZRoB03oA2gIR0CsCDTr/sE8dX2UKGgGR0CXdImF8G9paAdN6ANoCEdArAoWwkgOjXV9lChoBkdAl7xh/7SApmgHTegDaAhHQKwQHGmUGFB1fZQoaAZHQJjLoF+uvEFoB03oA2gIR0CsEtk9ECvHdX2UKGgGR0CZAuVx0dR0aAdN6ANoCEdArBcgEnssx3V9lChoBkdAmMbKFIuoP2gHTegDaAhHQKwaXXg9/z91fZQoaAZHQJh77kDIRyxoB03oA2gIR0CsIPubRWtEdX2UKGgGR0CYfd8ox59maAdN6ANoCEdArCLCIrOJL3V9lChoBkdAlkg7upjtomgHTegDaAhHQKwlf5pJwsJ1fZQoaAZHQJTHYvK2a2FoB03oA2gIR0CsJ2c1O0swdX2UKGgGR0CV0CRFZxJeaAdN6ANoCEdArC2xxaPjn3V9lChoBkdAmI+DQJHAh2gHTegDaAhHQKwvgMrEtNB1fZQoaAZHQJSCv/7zkIZoB03oA2gIR0CsM1gpjMFEdX2UKGgGR0CPF/EYO2AoaAdN6ANoCEdArDZsALiMpHV9lChoBkdAlMIQxSHdoGgHTegDaAhHQKw+coLG7z11fZQoaAZHQJUDIX40uUVoB03oA2gIR0CsQFS+QEIPdX2UKGgGR0CUwemozeoDaAdN6ANoCEdArEMDQZ4wAXV9lChoBkdAlhcQX/HYH2gHTegDaAhHQKxE2ssg+yJ1fZQoaAZHQJRm2PHT7VJoB03oA2gIR0CsSudmYjSodX2UKGgGR0CXEUlgc94eaAdN6ANoCEdArEy0sH0K7nV9lChoBkdAmDDHiaRZEGgHTegDaAhHQKxPa7YkE9t1fZQoaAZHQJaW8DwH7gtoB03oA2gIR0CsUkIIOYpldX2UKGgGR0CWl04x1xKhaAdN6ANoCEdArFueDSPU8XV9lChoBkdAlpPMfeUILWgHTegDaAhHQKxdYbCrLhd1fZQoaAZHQJeqxAX2ugZoB03oA2gIR0CsYASfthNNdX2UKGgGR0CUgyjM3ZPEaAdN6ANoCEdArGHxoAXEZXV9lChoBkdAlXYZsXSBsmgHTegDaAhHQKxn/DlYEGJ1fZQoaAZHQJfd1owmE5BoB03oA2gIR0Csab1UuL75dX2UKGgGR0CZwdifxtpFaAdN6ANoCEdArGyChpQDWHV9lChoBkdAl0nCeZof0WgHTegDaAhHQKxuaJ9Aood1fZQoaAZHQJYcV+d9UjtoB03oA2gIR0Csd7TwlSjydX2UKGgGR0CXJSdHDrJKaAdN6ANoCEdArHpm7OE/S3V9lChoBkdAmkcSjtXxOWgHTegDaAhHQKx9HRhttQ91fZQoaAZHQJcbDoLXtjVoB03oA2gIR0CsfwBL5AQhdX2UKGgGR0CWdYD6Fds0aAdN6ANoCEdArIUE4//vOXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b2005ab837f101724d87e20047856f56d725acc7ac284a1611ed61fd379222d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a4d704b24baa2688714efd55336841ea42c1f93a65e11f109b943c036c02b5a
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2bfa443310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2bfa4433a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2bfa443430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2bfa4434c0>", "_build": "<function ActorCriticPolicy._build at 0x7f2bfa443550>", "forward": "<function ActorCriticPolicy.forward at 0x7f2bfa4435e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2bfa443670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2bfa443700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2bfa443790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2bfa443820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2bfa4438b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2bfa443940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2bfa444780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679200366265629480, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAASH1D7tISw/0mIiPxdVvT6Hjey+PSoQP7HpDb8lSRG/xwRFvyLLED9kJ2k/KgWZPhImIz8sYg0+NOU6P29rpDzym1U+0DG+vm3/oL6IdJk+nsJfv+yeDD1is98/c/fZvqDqPT+Lv+c+7CcCP/eRX78cDJQ/14KJvyVE8L7VhP8+p8/gvwXYqb/leau+woHVvgeGpj+zevO+9lsZP5Qttr12YgM/WaqzvifdVL3xMEu/U4apvy6AIT2RQxC+wHiVP0aDkrynrRA/2kA5vncIbT+g6j0/i7/nPuwnAj/3kV+/qHRJP3ghgz2Wlwk/bIOMP9unw76uaZM/90xyv0q2t787kVw/zjGdP3XrTz+r4iG8ameRv46erD7dLh4/VymevTyREj58BBO/6heAvsf8hz+elFS/ZigJP4n6DL8CtizAoOo9P4u/5z7sJwI/95Ffv9n7gD8E4BE9kssGP+Jhzj6u67S/q4oNwKEyKL91xZu/gfCAP63Fhb93rK4+1lKLv6Jajb9rPAY9xQEcPiAk0j6l+aG/0fzwPluucz86ggi99qhcv7QBZr+mSUu+QOi8P/qJrL+Lv+c+cML7v/eRX7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADqHui2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaPy9PQAAAABjNfK/AAAAADKTKD0AAAAAUQD4PwAAAACaLQS+AAAAABjv5T8AAAAAvh7hPQAAAAC+Gfy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4PjCtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG8cCD4AAAAAIWbwvwAAAACEPCE9AAAAAOos4T8AAAAAmL+svQAAAABDHPA/AAAAALXomD0AAAAADUjkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMEZIDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBMuw6+AAAAABIj378AAAAA/PdnPQAAAADo//g/AAAAAIA6Cr4AAAAACIjmPwAAAACyIyO9AAAAAK48+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFPpM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHChYvAAAAABNcPK/AAAAAOTNkj0AAAAAzj3wPwAAAABGiWE9AAAAAIx/+j8AAAAAm/tMvQAAAAD/Dfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVntmYjSoiMAWyUTegDjAF0lEdAqx8Mq8UVSHV9lChoBkdAkVSbD/EOy2gHTegDaAhHQKsiHYcvM8p1fZQoaAZHQJVvg1baAWloB03oA2gIR0CrI/sajvd/dX2UKGgGR0CQgIxri2lVaAdN6ANoCEdAqyoquB+WnnV9lChoBkdAlh2/0yxiX2gHTegDaAhHQKssCf0VafV1fZQoaAZHQJdERuKoAGVoB03oA2gIR0CrLrvUrkKedX2UKGgGR0CJQM2+fywwaAdN6ANoCEdAqzCnAKv3anV9lChoBkdAk7OZXuE252gHTegDaAhHQKs4S7U5MlF1fZQoaAZHQJYB2JbdJrdoB03oA2gIR0CrOzgOSW7fdX2UKGgGR0CV0AMx46fbaAdN6ANoCEdAqz+MIeHSGHV9lChoBkdAl5+cAzYVZmgHTegDaAhHQKtBf49HMEB1fZQoaAZHQJV2WsXBP9FoB03oA2gIR0CrR7E/bCaadX2UKGgGR0CTt2/Yao/BaAdN6ANoCEdAq0mNSCOFQHV9lChoBkdAkcRwKfFrEmgHTegDaAhHQKtMQFyq+8J1fZQoaAZHQJJpHJPqLTBoB03oA2gIR0CrThYL9deIdX2UKGgGR0CTVdjcmBvraAdN6ANoCEdAq1SUYAKfF3V9lChoBkdAlu7HezlcQmgHTegDaAhHQKtXSkleF+N1fZQoaAZHQJavnxNIsiBoB03oA2gIR0CrW6NmUW2xdX2UKGgGR0CUNF8kUsWgaAdN6ANoCEdAq168V1wHaHV9lChoBkdAkvSzB68g6mgHTegDaAhHQKtk+SVW0Z51fZQoaAZHQJO5sMnZ00ZoB03oA2gIR0CrZr5SNwR5dX2UKGgGR0CUFIuuRs/IaAdN6ANoCEdAq2leVHFxXHV9lChoBkdAlch/p+tr9GgHTegDaAhHQKtrS7jDKo11fZQoaAZHQJF2RdhRZU1oB03oA2gIR0CrcVoBq9GrdX2UKGgGR0CN+KAQQL/kaAdN6ANoCEdAq3Nht+CsfnV9lChoBkdAlrbnVf/m1mgHTegDaAhHQKt3kNAC4jN1fZQoaAZHQJPtmSRr8BNoB03oA2gIR0CreqvAXVLBdX2UKGgGR0CRwfQ2/BWQaAdN6ANoCEdAq4IpMrVe8nV9lChoBkdAllBxbB42TGgHTegDaAhHQKuD5ATIvJ11fZQoaAZHQJjIEN8VpK1oB03oA2gIR0CrhoetKZlWdX2UKGgGR0CY879r433paAdN6ANoCEdAq4h8/r0J4XV9lChoBkdAmV58nZ00WWgHTegDaAhHQKuOhRXOnl51fZQoaAZHQJacCpHZsbhoB03oA2gIR0CrkEVV5rxidX2UKGgGR0CUNCZxrBTGaAdN6ANoCEdAq5NlH6MzdnV9lChoBkdAkcoZQP7N0WgHTegDaAhHQKuWN1pTMq11fZQoaAZHQJMK/EWIoE1oB03oA2gIR0Crn2CGFi8WdX2UKGgGR0CRR8OPeYUnaAdN6ANoCEdAq6EwWHk92XV9lChoBkdAkqQPiHZbp2gHTegDaAhHQKuj/+S8rZt1fZQoaAZHQJYyc0l7dBVoB03oA2gIR0CrpdIF/x2CdX2UKGgGR0CUIFF0gbIcaAdN6ANoCEdAq6vgvQF9r3V9lChoBkdAkg20mICU5mgHTegDaAhHQKutqCwr1/V1fZQoaAZHQJSdhYZEUj9oB03oA2gIR0CrsD2wu/UOdX2UKGgGR0CTOWIpH7P6aAdN6ANoCEdAq7I3CGetjnV9lChoBkdAkN40YbbUPWgHTegDaAhHQKu7yMBp5/t1fZQoaAZHQJBkuiaiKzloB03oA2gIR0Crvi1gH/tIdX2UKGgGR0CY4N1KGtZFaAdN6ANoCEdAq8DL+Haew3V9lChoBkdAkM0r876pHmgHTegDaAhHQKvCumtQsPJ1fZQoaAZHQJVJKuaF23doB03oA2gIR0CryNch1TzedX2UKGgGR0CVM5aUA1ejaAdN6ANoCEdAq8qgr+YMOXV9lChoBkdAlzNL4zrNW2gHTegDaAhHQKvNP0Qsf7t1fZQoaAZHQJXKMR28qWloB03oA2gIR0Crzy0gSvkjdX2UKGgGR0CVpeuJk5IZaAdN6ANoCEdAq9fNV/+bVnV9lChoBkdAlQI92cJ+lWgHTegDaAhHQKvasmUGFBZ1fZQoaAZHQIz5SnvUjLVoB03oA2gIR0Cr3lHCoCMhdX2UKGgGR0CShVld1MdtaAdN6ANoCEdAq+BEXxe9jHV9lChoBkdAlVmkHD766GgHTegDaAhHQKvmdZamoBJ1fZQoaAZHQJN7ZbUwztVoB03oA2gIR0Cr6Dy9du50dX2UKGgGR0CUihej2zv7aAdN6ANoCEdAq+r6++M6zXV9lChoBkdAlaTspXp4bGgHTegDaAhHQKvs2uX/o7p1fZQoaAZHQJlOX0yxiXpoB03oA2gIR0Cr8+5NwiqydX2UKGgGR0CXK1xbB42TaAdN6ANoCEdAq/a+IuXeFnV9lChoBkdAmAUVbzK9wmgHTegDaAhHQKv7PAUL2Ht1fZQoaAZHQJgdtNXYDkloB03oA2gIR0Cr/ZwPRRdhdX2UKGgGR0CWm2XAuZkTaAdN6ANoCEdArAO9DBuXNXV9lChoBkdAk2Jh5HEuQWgHTegDaAhHQKwFhWXkYGd1fZQoaAZHQJcgJ+jM3ZRoB03oA2gIR0CsCDTr/sE8dX2UKGgGR0CXdImF8G9paAdN6ANoCEdArAoWwkgOjXV9lChoBkdAl7xh/7SApmgHTegDaAhHQKwQHGmUGFB1fZQoaAZHQJjLoF+uvEFoB03oA2gIR0CsEtk9ECvHdX2UKGgGR0CZAuVx0dR0aAdN6ANoCEdArBcgEnssx3V9lChoBkdAmMbKFIuoP2gHTegDaAhHQKwaXXg9/z91fZQoaAZHQJh77kDIRyxoB03oA2gIR0CsIPubRWtEdX2UKGgGR0CYfd8ox59maAdN6ANoCEdArCLCIrOJL3V9lChoBkdAlkg7upjtomgHTegDaAhHQKwlf5pJwsJ1fZQoaAZHQJTHYvK2a2FoB03oA2gIR0CsJ2c1O0swdX2UKGgGR0CV0CRFZxJeaAdN6ANoCEdArC2xxaPjn3V9lChoBkdAmI+DQJHAh2gHTegDaAhHQKwvgMrEtNB1fZQoaAZHQJSCv/7zkIZoB03oA2gIR0CsM1gpjMFEdX2UKGgGR0CPF/EYO2AoaAdN6ANoCEdArDZsALiMpHV9lChoBkdAlMIQxSHdoGgHTegDaAhHQKw+coLG7z11fZQoaAZHQJUDIX40uUVoB03oA2gIR0CsQFS+QEIPdX2UKGgGR0CUwemozeoDaAdN6ANoCEdArEMDQZ4wAXV9lChoBkdAlhcQX/HYH2gHTegDaAhHQKxE2ssg+yJ1fZQoaAZHQJRm2PHT7VJoB03oA2gIR0CsSudmYjSodX2UKGgGR0CXEUlgc94eaAdN6ANoCEdArEy0sH0K7nV9lChoBkdAmDDHiaRZEGgHTegDaAhHQKxPa7YkE9t1fZQoaAZHQJaW8DwH7gtoB03oA2gIR0CsUkIIOYpldX2UKGgGR0CWl04x1xKhaAdN6ANoCEdArFueDSPU8XV9lChoBkdAlpPMfeUILWgHTegDaAhHQKxdYbCrLhd1fZQoaAZHQJeqxAX2ugZoB03oA2gIR0CsYASfthNNdX2UKGgGR0CUgyjM3ZPEaAdN6ANoCEdArGHxoAXEZXV9lChoBkdAlXYZsXSBsmgHTegDaAhHQKxn/DlYEGJ1fZQoaAZHQJfd1owmE5BoB03oA2gIR0Csab1UuL75dX2UKGgGR0CZwdifxtpFaAdN6ANoCEdArGyChpQDWHV9lChoBkdAl0nCeZof0WgHTegDaAhHQKxuaJ9Aood1fZQoaAZHQJYcV+d9UjtoB03oA2gIR0Csd7TwlSjydX2UKGgGR0CXJSdHDrJKaAdN6ANoCEdArHpm7OE/S3V9lChoBkdAmkcSjtXxOWgHTegDaAhHQKx9HRhttQ91fZQoaAZHQJcbDoLXtjVoB03oA2gIR0CsfwBL5AQhdX2UKGgGR0CWdYD6Fds0aAdN6ANoCEdArIUE4//vOXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21b0a9559838d400b834ea12b97a2b4ef585bb4b5d65a9a0b2fd3876786bb95d
|
3 |
+
size 1165829
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1538.634993749328, "std_reward": 176.08848218629785, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T05:33:28.954432"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dd358a6073f72e5d12b286a24cd3e34bf3103adc50f9375821fa7d0081043d6
|
3 |
+
size 2521
|