eduiqe commited on
Commit
c0684c6
1 Parent(s): b7e6cc9

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1538.63 +/- 176.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6c5213576c889eec200d5885aa311cb9bfa4a322045db78004ca195c4ebfcac
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2bfa443310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2bfa4433a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2bfa443430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2bfa4434c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2bfa443550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2bfa4435e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2bfa443670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2bfa443700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2bfa443790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2bfa443820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2bfa4438b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2bfa443940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2bfa444780>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679200366265629480,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAASH1D7tISw/0mIiPxdVvT6Hjey+PSoQP7HpDb8lSRG/xwRFvyLLED9kJ2k/KgWZPhImIz8sYg0+NOU6P29rpDzym1U+0DG+vm3/oL6IdJk+nsJfv+yeDD1is98/c/fZvqDqPT+Lv+c+7CcCP/eRX78cDJQ/14KJvyVE8L7VhP8+p8/gvwXYqb/leau+woHVvgeGpj+zevO+9lsZP5Qttr12YgM/WaqzvifdVL3xMEu/U4apvy6AIT2RQxC+wHiVP0aDkrynrRA/2kA5vncIbT+g6j0/i7/nPuwnAj/3kV+/qHRJP3ghgz2Wlwk/bIOMP9unw76uaZM/90xyv0q2t787kVw/zjGdP3XrTz+r4iG8ameRv46erD7dLh4/VymevTyREj58BBO/6heAvsf8hz+elFS/ZigJP4n6DL8CtizAoOo9P4u/5z7sJwI/95Ffv9n7gD8E4BE9kssGP+Jhzj6u67S/q4oNwKEyKL91xZu/gfCAP63Fhb93rK4+1lKLv6Jajb9rPAY9xQEcPiAk0j6l+aG/0fzwPluucz86ggi99qhcv7QBZr+mSUu+QOi8P/qJrL+Lv+c+cML7v/eRX7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADqHui2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaPy9PQAAAABjNfK/AAAAADKTKD0AAAAAUQD4PwAAAACaLQS+AAAAABjv5T8AAAAAvh7hPQAAAAC+Gfy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4PjCtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG8cCD4AAAAAIWbwvwAAAACEPCE9AAAAAOos4T8AAAAAmL+svQAAAABDHPA/AAAAALXomD0AAAAADUjkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMEZIDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBMuw6+AAAAABIj378AAAAA/PdnPQAAAADo//g/AAAAAIA6Cr4AAAAACIjmPwAAAACyIyO9AAAAAK48+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFPpM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHChYvAAAAABNcPK/AAAAAOTNkj0AAAAAzj3wPwAAAABGiWE9AAAAAIx/+j8AAAAAm/tMvQAAAAD/Dfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVntmYjSoiMAWyUTegDjAF0lEdAqx8Mq8UVSHV9lChoBkdAkVSbD/EOy2gHTegDaAhHQKsiHYcvM8p1fZQoaAZHQJVvg1baAWloB03oA2gIR0CrI/sajvd/dX2UKGgGR0CQgIxri2lVaAdN6ANoCEdAqyoquB+WnnV9lChoBkdAlh2/0yxiX2gHTegDaAhHQKssCf0VafV1fZQoaAZHQJdERuKoAGVoB03oA2gIR0CrLrvUrkKedX2UKGgGR0CJQM2+fywwaAdN6ANoCEdAqzCnAKv3anV9lChoBkdAk7OZXuE252gHTegDaAhHQKs4S7U5MlF1fZQoaAZHQJYB2JbdJrdoB03oA2gIR0CrOzgOSW7fdX2UKGgGR0CV0AMx46fbaAdN6ANoCEdAqz+MIeHSGHV9lChoBkdAl5+cAzYVZmgHTegDaAhHQKtBf49HMEB1fZQoaAZHQJV2WsXBP9FoB03oA2gIR0CrR7E/bCaadX2UKGgGR0CTt2/Yao/BaAdN6ANoCEdAq0mNSCOFQHV9lChoBkdAkcRwKfFrEmgHTegDaAhHQKtMQFyq+8J1fZQoaAZHQJJpHJPqLTBoB03oA2gIR0CrThYL9deIdX2UKGgGR0CTVdjcmBvraAdN6ANoCEdAq1SUYAKfF3V9lChoBkdAlu7HezlcQmgHTegDaAhHQKtXSkleF+N1fZQoaAZHQJavnxNIsiBoB03oA2gIR0CrW6NmUW2xdX2UKGgGR0CUNF8kUsWgaAdN6ANoCEdAq168V1wHaHV9lChoBkdAkvSzB68g6mgHTegDaAhHQKtk+SVW0Z51fZQoaAZHQJO5sMnZ00ZoB03oA2gIR0CrZr5SNwR5dX2UKGgGR0CUFIuuRs/IaAdN6ANoCEdAq2leVHFxXHV9lChoBkdAlch/p+tr9GgHTegDaAhHQKtrS7jDKo11fZQoaAZHQJF2RdhRZU1oB03oA2gIR0CrcVoBq9GrdX2UKGgGR0CN+KAQQL/kaAdN6ANoCEdAq3Nht+CsfnV9lChoBkdAlrbnVf/m1mgHTegDaAhHQKt3kNAC4jN1fZQoaAZHQJPtmSRr8BNoB03oA2gIR0CreqvAXVLBdX2UKGgGR0CRwfQ2/BWQaAdN6ANoCEdAq4IpMrVe8nV9lChoBkdAllBxbB42TGgHTegDaAhHQKuD5ATIvJ11fZQoaAZHQJjIEN8VpK1oB03oA2gIR0CrhoetKZlWdX2UKGgGR0CY879r433paAdN6ANoCEdAq4h8/r0J4XV9lChoBkdAmV58nZ00WWgHTegDaAhHQKuOhRXOnl51fZQoaAZHQJacCpHZsbhoB03oA2gIR0CrkEVV5rxidX2UKGgGR0CUNCZxrBTGaAdN6ANoCEdAq5NlH6MzdnV9lChoBkdAkcoZQP7N0WgHTegDaAhHQKuWN1pTMq11fZQoaAZHQJMK/EWIoE1oB03oA2gIR0Crn2CGFi8WdX2UKGgGR0CRR8OPeYUnaAdN6ANoCEdAq6EwWHk92XV9lChoBkdAkqQPiHZbp2gHTegDaAhHQKuj/+S8rZt1fZQoaAZHQJYyc0l7dBVoB03oA2gIR0CrpdIF/x2CdX2UKGgGR0CUIFF0gbIcaAdN6ANoCEdAq6vgvQF9r3V9lChoBkdAkg20mICU5mgHTegDaAhHQKutqCwr1/V1fZQoaAZHQJSdhYZEUj9oB03oA2gIR0CrsD2wu/UOdX2UKGgGR0CTOWIpH7P6aAdN6ANoCEdAq7I3CGetjnV9lChoBkdAkN40YbbUPWgHTegDaAhHQKu7yMBp5/t1fZQoaAZHQJBkuiaiKzloB03oA2gIR0Crvi1gH/tIdX2UKGgGR0CY4N1KGtZFaAdN6ANoCEdAq8DL+Haew3V9lChoBkdAkM0r876pHmgHTegDaAhHQKvCumtQsPJ1fZQoaAZHQJVJKuaF23doB03oA2gIR0CryNch1TzedX2UKGgGR0CVM5aUA1ejaAdN6ANoCEdAq8qgr+YMOXV9lChoBkdAlzNL4zrNW2gHTegDaAhHQKvNP0Qsf7t1fZQoaAZHQJXKMR28qWloB03oA2gIR0Crzy0gSvkjdX2UKGgGR0CVpeuJk5IZaAdN6ANoCEdAq9fNV/+bVnV9lChoBkdAlQI92cJ+lWgHTegDaAhHQKvasmUGFBZ1fZQoaAZHQIz5SnvUjLVoB03oA2gIR0Cr3lHCoCMhdX2UKGgGR0CShVld1MdtaAdN6ANoCEdAq+BEXxe9jHV9lChoBkdAlVmkHD766GgHTegDaAhHQKvmdZamoBJ1fZQoaAZHQJN7ZbUwztVoB03oA2gIR0Cr6Dy9du50dX2UKGgGR0CUihej2zv7aAdN6ANoCEdAq+r6++M6zXV9lChoBkdAlaTspXp4bGgHTegDaAhHQKvs2uX/o7p1fZQoaAZHQJlOX0yxiXpoB03oA2gIR0Cr8+5NwiqydX2UKGgGR0CXK1xbB42TaAdN6ANoCEdAq/a+IuXeFnV9lChoBkdAmAUVbzK9wmgHTegDaAhHQKv7PAUL2Ht1fZQoaAZHQJgdtNXYDkloB03oA2gIR0Cr/ZwPRRdhdX2UKGgGR0CWm2XAuZkTaAdN6ANoCEdArAO9DBuXNXV9lChoBkdAk2Jh5HEuQWgHTegDaAhHQKwFhWXkYGd1fZQoaAZHQJcgJ+jM3ZRoB03oA2gIR0CsCDTr/sE8dX2UKGgGR0CXdImF8G9paAdN6ANoCEdArAoWwkgOjXV9lChoBkdAl7xh/7SApmgHTegDaAhHQKwQHGmUGFB1fZQoaAZHQJjLoF+uvEFoB03oA2gIR0CsEtk9ECvHdX2UKGgGR0CZAuVx0dR0aAdN6ANoCEdArBcgEnssx3V9lChoBkdAmMbKFIuoP2gHTegDaAhHQKwaXXg9/z91fZQoaAZHQJh77kDIRyxoB03oA2gIR0CsIPubRWtEdX2UKGgGR0CYfd8ox59maAdN6ANoCEdArCLCIrOJL3V9lChoBkdAlkg7upjtomgHTegDaAhHQKwlf5pJwsJ1fZQoaAZHQJTHYvK2a2FoB03oA2gIR0CsJ2c1O0swdX2UKGgGR0CV0CRFZxJeaAdN6ANoCEdArC2xxaPjn3V9lChoBkdAmI+DQJHAh2gHTegDaAhHQKwvgMrEtNB1fZQoaAZHQJSCv/7zkIZoB03oA2gIR0CsM1gpjMFEdX2UKGgGR0CPF/EYO2AoaAdN6ANoCEdArDZsALiMpHV9lChoBkdAlMIQxSHdoGgHTegDaAhHQKw+coLG7z11fZQoaAZHQJUDIX40uUVoB03oA2gIR0CsQFS+QEIPdX2UKGgGR0CUwemozeoDaAdN6ANoCEdArEMDQZ4wAXV9lChoBkdAlhcQX/HYH2gHTegDaAhHQKxE2ssg+yJ1fZQoaAZHQJRm2PHT7VJoB03oA2gIR0CsSudmYjSodX2UKGgGR0CXEUlgc94eaAdN6ANoCEdArEy0sH0K7nV9lChoBkdAmDDHiaRZEGgHTegDaAhHQKxPa7YkE9t1fZQoaAZHQJaW8DwH7gtoB03oA2gIR0CsUkIIOYpldX2UKGgGR0CWl04x1xKhaAdN6ANoCEdArFueDSPU8XV9lChoBkdAlpPMfeUILWgHTegDaAhHQKxdYbCrLhd1fZQoaAZHQJeqxAX2ugZoB03oA2gIR0CsYASfthNNdX2UKGgGR0CUgyjM3ZPEaAdN6ANoCEdArGHxoAXEZXV9lChoBkdAlXYZsXSBsmgHTegDaAhHQKxn/DlYEGJ1fZQoaAZHQJfd1owmE5BoB03oA2gIR0Csab1UuL75dX2UKGgGR0CZwdifxtpFaAdN6ANoCEdArGyChpQDWHV9lChoBkdAl0nCeZof0WgHTegDaAhHQKxuaJ9Aood1fZQoaAZHQJYcV+d9UjtoB03oA2gIR0Csd7TwlSjydX2UKGgGR0CXJSdHDrJKaAdN6ANoCEdArHpm7OE/S3V9lChoBkdAmkcSjtXxOWgHTegDaAhHQKx9HRhttQ91fZQoaAZHQJcbDoLXtjVoB03oA2gIR0CsfwBL5AQhdX2UKGgGR0CWdYD6Fds0aAdN6ANoCEdArIUE4//vOXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b2005ab837f101724d87e20047856f56d725acc7ac284a1611ed61fd379222d
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a4d704b24baa2688714efd55336841ea42c1f93a65e11f109b943c036c02b5a
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2bfa443310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2bfa4433a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2bfa443430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2bfa4434c0>", "_build": "<function ActorCriticPolicy._build at 0x7f2bfa443550>", "forward": "<function ActorCriticPolicy.forward at 0x7f2bfa4435e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2bfa443670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2bfa443700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2bfa443790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2bfa443820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2bfa4438b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2bfa443940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2bfa444780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679200366265629480, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAASH1D7tISw/0mIiPxdVvT6Hjey+PSoQP7HpDb8lSRG/xwRFvyLLED9kJ2k/KgWZPhImIz8sYg0+NOU6P29rpDzym1U+0DG+vm3/oL6IdJk+nsJfv+yeDD1is98/c/fZvqDqPT+Lv+c+7CcCP/eRX78cDJQ/14KJvyVE8L7VhP8+p8/gvwXYqb/leau+woHVvgeGpj+zevO+9lsZP5Qttr12YgM/WaqzvifdVL3xMEu/U4apvy6AIT2RQxC+wHiVP0aDkrynrRA/2kA5vncIbT+g6j0/i7/nPuwnAj/3kV+/qHRJP3ghgz2Wlwk/bIOMP9unw76uaZM/90xyv0q2t787kVw/zjGdP3XrTz+r4iG8ameRv46erD7dLh4/VymevTyREj58BBO/6heAvsf8hz+elFS/ZigJP4n6DL8CtizAoOo9P4u/5z7sJwI/95Ffv9n7gD8E4BE9kssGP+Jhzj6u67S/q4oNwKEyKL91xZu/gfCAP63Fhb93rK4+1lKLv6Jajb9rPAY9xQEcPiAk0j6l+aG/0fzwPluucz86ggi99qhcv7QBZr+mSUu+QOi8P/qJrL+Lv+c+cML7v/eRX7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADqHui2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaPy9PQAAAABjNfK/AAAAADKTKD0AAAAAUQD4PwAAAACaLQS+AAAAABjv5T8AAAAAvh7hPQAAAAC+Gfy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4PjCtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG8cCD4AAAAAIWbwvwAAAACEPCE9AAAAAOos4T8AAAAAmL+svQAAAABDHPA/AAAAALXomD0AAAAADUjkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMEZIDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBMuw6+AAAAABIj378AAAAA/PdnPQAAAADo//g/AAAAAIA6Cr4AAAAACIjmPwAAAACyIyO9AAAAAK48+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFPpM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHChYvAAAAABNcPK/AAAAAOTNkj0AAAAAzj3wPwAAAABGiWE9AAAAAIx/+j8AAAAAm/tMvQAAAAD/Dfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVntmYjSoiMAWyUTegDjAF0lEdAqx8Mq8UVSHV9lChoBkdAkVSbD/EOy2gHTegDaAhHQKsiHYcvM8p1fZQoaAZHQJVvg1baAWloB03oA2gIR0CrI/sajvd/dX2UKGgGR0CQgIxri2lVaAdN6ANoCEdAqyoquB+WnnV9lChoBkdAlh2/0yxiX2gHTegDaAhHQKssCf0VafV1fZQoaAZHQJdERuKoAGVoB03oA2gIR0CrLrvUrkKedX2UKGgGR0CJQM2+fywwaAdN6ANoCEdAqzCnAKv3anV9lChoBkdAk7OZXuE252gHTegDaAhHQKs4S7U5MlF1fZQoaAZHQJYB2JbdJrdoB03oA2gIR0CrOzgOSW7fdX2UKGgGR0CV0AMx46fbaAdN6ANoCEdAqz+MIeHSGHV9lChoBkdAl5+cAzYVZmgHTegDaAhHQKtBf49HMEB1fZQoaAZHQJV2WsXBP9FoB03oA2gIR0CrR7E/bCaadX2UKGgGR0CTt2/Yao/BaAdN6ANoCEdAq0mNSCOFQHV9lChoBkdAkcRwKfFrEmgHTegDaAhHQKtMQFyq+8J1fZQoaAZHQJJpHJPqLTBoB03oA2gIR0CrThYL9deIdX2UKGgGR0CTVdjcmBvraAdN6ANoCEdAq1SUYAKfF3V9lChoBkdAlu7HezlcQmgHTegDaAhHQKtXSkleF+N1fZQoaAZHQJavnxNIsiBoB03oA2gIR0CrW6NmUW2xdX2UKGgGR0CUNF8kUsWgaAdN6ANoCEdAq168V1wHaHV9lChoBkdAkvSzB68g6mgHTegDaAhHQKtk+SVW0Z51fZQoaAZHQJO5sMnZ00ZoB03oA2gIR0CrZr5SNwR5dX2UKGgGR0CUFIuuRs/IaAdN6ANoCEdAq2leVHFxXHV9lChoBkdAlch/p+tr9GgHTegDaAhHQKtrS7jDKo11fZQoaAZHQJF2RdhRZU1oB03oA2gIR0CrcVoBq9GrdX2UKGgGR0CN+KAQQL/kaAdN6ANoCEdAq3Nht+CsfnV9lChoBkdAlrbnVf/m1mgHTegDaAhHQKt3kNAC4jN1fZQoaAZHQJPtmSRr8BNoB03oA2gIR0CreqvAXVLBdX2UKGgGR0CRwfQ2/BWQaAdN6ANoCEdAq4IpMrVe8nV9lChoBkdAllBxbB42TGgHTegDaAhHQKuD5ATIvJ11fZQoaAZHQJjIEN8VpK1oB03oA2gIR0CrhoetKZlWdX2UKGgGR0CY879r433paAdN6ANoCEdAq4h8/r0J4XV9lChoBkdAmV58nZ00WWgHTegDaAhHQKuOhRXOnl51fZQoaAZHQJacCpHZsbhoB03oA2gIR0CrkEVV5rxidX2UKGgGR0CUNCZxrBTGaAdN6ANoCEdAq5NlH6MzdnV9lChoBkdAkcoZQP7N0WgHTegDaAhHQKuWN1pTMq11fZQoaAZHQJMK/EWIoE1oB03oA2gIR0Crn2CGFi8WdX2UKGgGR0CRR8OPeYUnaAdN6ANoCEdAq6EwWHk92XV9lChoBkdAkqQPiHZbp2gHTegDaAhHQKuj/+S8rZt1fZQoaAZHQJYyc0l7dBVoB03oA2gIR0CrpdIF/x2CdX2UKGgGR0CUIFF0gbIcaAdN6ANoCEdAq6vgvQF9r3V9lChoBkdAkg20mICU5mgHTegDaAhHQKutqCwr1/V1fZQoaAZHQJSdhYZEUj9oB03oA2gIR0CrsD2wu/UOdX2UKGgGR0CTOWIpH7P6aAdN6ANoCEdAq7I3CGetjnV9lChoBkdAkN40YbbUPWgHTegDaAhHQKu7yMBp5/t1fZQoaAZHQJBkuiaiKzloB03oA2gIR0Crvi1gH/tIdX2UKGgGR0CY4N1KGtZFaAdN6ANoCEdAq8DL+Haew3V9lChoBkdAkM0r876pHmgHTegDaAhHQKvCumtQsPJ1fZQoaAZHQJVJKuaF23doB03oA2gIR0CryNch1TzedX2UKGgGR0CVM5aUA1ejaAdN6ANoCEdAq8qgr+YMOXV9lChoBkdAlzNL4zrNW2gHTegDaAhHQKvNP0Qsf7t1fZQoaAZHQJXKMR28qWloB03oA2gIR0Crzy0gSvkjdX2UKGgGR0CVpeuJk5IZaAdN6ANoCEdAq9fNV/+bVnV9lChoBkdAlQI92cJ+lWgHTegDaAhHQKvasmUGFBZ1fZQoaAZHQIz5SnvUjLVoB03oA2gIR0Cr3lHCoCMhdX2UKGgGR0CShVld1MdtaAdN6ANoCEdAq+BEXxe9jHV9lChoBkdAlVmkHD766GgHTegDaAhHQKvmdZamoBJ1fZQoaAZHQJN7ZbUwztVoB03oA2gIR0Cr6Dy9du50dX2UKGgGR0CUihej2zv7aAdN6ANoCEdAq+r6++M6zXV9lChoBkdAlaTspXp4bGgHTegDaAhHQKvs2uX/o7p1fZQoaAZHQJlOX0yxiXpoB03oA2gIR0Cr8+5NwiqydX2UKGgGR0CXK1xbB42TaAdN6ANoCEdAq/a+IuXeFnV9lChoBkdAmAUVbzK9wmgHTegDaAhHQKv7PAUL2Ht1fZQoaAZHQJgdtNXYDkloB03oA2gIR0Cr/ZwPRRdhdX2UKGgGR0CWm2XAuZkTaAdN6ANoCEdArAO9DBuXNXV9lChoBkdAk2Jh5HEuQWgHTegDaAhHQKwFhWXkYGd1fZQoaAZHQJcgJ+jM3ZRoB03oA2gIR0CsCDTr/sE8dX2UKGgGR0CXdImF8G9paAdN6ANoCEdArAoWwkgOjXV9lChoBkdAl7xh/7SApmgHTegDaAhHQKwQHGmUGFB1fZQoaAZHQJjLoF+uvEFoB03oA2gIR0CsEtk9ECvHdX2UKGgGR0CZAuVx0dR0aAdN6ANoCEdArBcgEnssx3V9lChoBkdAmMbKFIuoP2gHTegDaAhHQKwaXXg9/z91fZQoaAZHQJh77kDIRyxoB03oA2gIR0CsIPubRWtEdX2UKGgGR0CYfd8ox59maAdN6ANoCEdArCLCIrOJL3V9lChoBkdAlkg7upjtomgHTegDaAhHQKwlf5pJwsJ1fZQoaAZHQJTHYvK2a2FoB03oA2gIR0CsJ2c1O0swdX2UKGgGR0CV0CRFZxJeaAdN6ANoCEdArC2xxaPjn3V9lChoBkdAmI+DQJHAh2gHTegDaAhHQKwvgMrEtNB1fZQoaAZHQJSCv/7zkIZoB03oA2gIR0CsM1gpjMFEdX2UKGgGR0CPF/EYO2AoaAdN6ANoCEdArDZsALiMpHV9lChoBkdAlMIQxSHdoGgHTegDaAhHQKw+coLG7z11fZQoaAZHQJUDIX40uUVoB03oA2gIR0CsQFS+QEIPdX2UKGgGR0CUwemozeoDaAdN6ANoCEdArEMDQZ4wAXV9lChoBkdAlhcQX/HYH2gHTegDaAhHQKxE2ssg+yJ1fZQoaAZHQJRm2PHT7VJoB03oA2gIR0CsSudmYjSodX2UKGgGR0CXEUlgc94eaAdN6ANoCEdArEy0sH0K7nV9lChoBkdAmDDHiaRZEGgHTegDaAhHQKxPa7YkE9t1fZQoaAZHQJaW8DwH7gtoB03oA2gIR0CsUkIIOYpldX2UKGgGR0CWl04x1xKhaAdN6ANoCEdArFueDSPU8XV9lChoBkdAlpPMfeUILWgHTegDaAhHQKxdYbCrLhd1fZQoaAZHQJeqxAX2ugZoB03oA2gIR0CsYASfthNNdX2UKGgGR0CUgyjM3ZPEaAdN6ANoCEdArGHxoAXEZXV9lChoBkdAlXYZsXSBsmgHTegDaAhHQKxn/DlYEGJ1fZQoaAZHQJfd1owmE5BoB03oA2gIR0Csab1UuL75dX2UKGgGR0CZwdifxtpFaAdN6ANoCEdArGyChpQDWHV9lChoBkdAl0nCeZof0WgHTegDaAhHQKxuaJ9Aood1fZQoaAZHQJYcV+d9UjtoB03oA2gIR0Csd7TwlSjydX2UKGgGR0CXJSdHDrJKaAdN6ANoCEdArHpm7OE/S3V9lChoBkdAmkcSjtXxOWgHTegDaAhHQKx9HRhttQ91fZQoaAZHQJcbDoLXtjVoB03oA2gIR0CsfwBL5AQhdX2UKGgGR0CWdYD6Fds0aAdN6ANoCEdArIUE4//vOXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21b0a9559838d400b834ea12b97a2b4ef585bb4b5d65a9a0b2fd3876786bb95d
3
+ size 1165829
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1538.634993749328, "std_reward": 176.08848218629785, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T05:33:28.954432"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dd358a6073f72e5d12b286a24cd3e34bf3103adc50f9375821fa7d0081043d6
3
+ size 2521