edus20 commited on
Commit
c7ba68d
1 Parent(s): 458918c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.66 +/- 21.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79dfe0f24ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79dfe0f24f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79dfe0f25000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79dfe0f25090>", "_build": "<function ActorCriticPolicy._build at 0x79dfe0f25120>", "forward": "<function ActorCriticPolicy.forward at 0x79dfe0f251b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79dfe0f25240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79dfe0f252d0>", "_predict": "<function ActorCriticPolicy._predict at 0x79dfe0f25360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79dfe0f253f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79dfe0f25480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79dfe0f25510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79df834ba880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733302694611329271, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoRWzvJNVg/tkgaPMx30b6idkM97dbmOwAAAAAAAAAAzeJOvPrvZT71vPe9B5aEvq7der1Kho87AAAAAAAAAAAAyVg9UCsxP8OCUrx1RLu+DU6NPR8bC7wAAAAAAAAAAM3KyL0uL4C8bFktvREbLrzZHo49WSoePgAAgD8AAIA/M6b1vcn8Jz/2bz86p8TRvsJuS71nGDQ9AAAAAAAAAAAAAV8+NO4yP+jQV77d6r2+J3rFPR8tFL4AAAAAAAAAAJoZSTl7FMM3ElYOvA7xhbxAYh282kNsPQAAgD8AAAAAYMY2PiQh3T5QvIa+Di7Dvumrgjww7SC+AAAAAAAAAABKpp0+WHyVP8XG3T5l2vu+bYv0PtAUoT0AAAAAAAAAAObOTL0vYZI/5PtAviMn0b5VRpK9IiduvAAAAAAAAAAAjWq0va4TiLp4HKK2U0GssT4OCTuYqr41AAAAAAAAgD9mxuk6BOWdPoUf272HAYy+SwwOO+7OPTwAAAAAAAAAAOj5l76hUkK9CDh4u6p2+blqIqc+qrexOgAAgD8AAIA/M/bLPFrKwD4zd9q9nnOMvhB2wb0SJJa9AAAAAAAAAAAzU6w8z8gHvL04c72ae8u8jPubPH5uDT4AAIA/AACAP4aUDb4NWgU/ZTguPoF2nr7TzZY92j/QPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMgcqOLiuOMAWyUS+6MAXSUR0CP4HJ5E+gUdX2UKGgGR0Bw57655JK8aAdNKwFoCEdAj+EnskY4yXV9lChoBkdAcT03xWkrPWgHS/BoCEdAj+IZggHNYHV9lChoBkdAcU3QJokAxWgHTUABaAhHQI/jYpYs/Y91fZQoaAZHQHEnwTmGM4toB0vvaAhHQI/j0xVQyh11fZQoaAZHQHD/AEQoTf1oB00KAWgIR0CP5A6wMYuTdX2UKGgGR0ByYbzmOlwcaAdL8mgIR0CP5wzXSSeRdX2UKGgGR0ByMeyGBWgfaAdNDwFoCEdAj+glBIFvAHV9lChoBkdAcrv+eOGTLWgHTRIBaAhHQI/oKa1Cw8p1fZQoaAZHQHBsLZ8KG+NoB00dAWgIR0CP6YKsuFpPdX2UKGgGR0BxeyM72criaAdL+WgIR0CP65iMHbAUdX2UKGgGR0Bw5fYZl4C7aAdNCgFoCEdAj+vnqNZNf3V9lChoBkdATfLI5o4+82gHS8VoCEdAj+xZNoJzDHV9lChoBkdAcgQD/EOy3WgHTQYBaAhHQI/stu1ndwh1fZQoaAZHQHHOcG1QZXNoB0vzaAhHQI/st3wCr951fZQoaAZHQHDsOu7pV0doB005AWgIR0CP7ZrTpgTidX2UKGgGR0BxAY2XLNfPaAdNAQFoCEdAj+3GNaQmu3V9lChoBkdAQjVHnU2DQWgHS89oCEdAj+7S/0ulGnV9lChoBkdAcl6v6CUX52gHTQkBaAhHQI/uz1bqyGB1fZQoaAZHQHCLwiml67doB01BAWgIR0CP79ZyMkyDdX2UKGgGR0Bu+7TSb6P9aAdNFwFoCEdAj/IPJzT4L3V9lChoBkdAcf26Ymb9ZWgHTQYBaAhHQI/2BtgrpaB1fZQoaAZHQHB5IH5aePJoB0v+aAhHQI/3R75VOsV1fZQoaAZHQHDA97ngYP5oB00zAWgIR0CP9+NpdrwfdX2UKGgGR0By3svvjOs1aAdNKAFoCEdAj/hu89Oh03V9lChoBkdAcutlzU7SzGgHS9poCEdAj/jAxJul43V9lChoBkdAcu3hUzbeuWgHS/RoCEdAj/ltXxOLznV9lChoBkdAckAgdOqNqGgHTZ4BaAhHQI/5zRKHwgF1fZQoaAZHQHINKslsxfxoB00MAWgIR0CP+6AtnPE9dX2UKGgGR0BxJVzOoo/iaAdNBAFoCEdAj/w0PYnOSnV9lChoBkdAc1OCQtBfKWgHS95oCEdAj/ytIsiB5HV9lChoBkdAbLZ55Z8rqmgHTRABaAhHQI/9HUWl/H51fZQoaAZHQHGa7tNSIgxoB005AWgIR0CP/eFZgXuWdX2UKGgGR0ByiRMxoIv8aAdNCQFoCEdAj/3xMFlkH3V9lChoBkdAcrgrFwT/Q2gHTR4BaAhHQI/+/zjFQ2x1fZQoaAZHQG9K2rXDm8xoB0vzaAhHQJAAIkRjBmB1fZQoaAZHQHFCR4dIXj5oB0vnaAhHQJABoPFvQ4V1fZQoaAZHQHBYtEG7jDNoB03DAWgIR0CQAj9jgAIZdX2UKGgGR0BykvYZl4C7aAdL/WgIR0CQA2oSL61tdX2UKGgGR0BucFktmL9/aAdL7GgIR0CQA3LbHp8ndX2UKGgGR0ByrlVvMr3CaAdL/WgIR0CQA8bmU4aQdX2UKGgGR0ByD35Jsfq5aAdNGQFoCEdAkBeBAGB4EHV9lChoBkdAUma4pc5bQmgHS7poCEdAkBfG8M/hVHV9lChoBkdAbP/0o0ALiWgHTR8BaAhHQJAYFClabF11fZQoaAZHQHJJAarFOwhoB00EAWgIR0CQGS/6fra/dX2UKGgGR0BvIEgpz90jaAdL9mgIR0CQGZd0aIepdX2UKGgGR0BxukmzByjpaAdL/WgIR0CQGZksjFAFdX2UKGgGR0BxSPmjj7yhaAdNYwFoCEdAkBoS9EkSmXV9lChoBkdAbid5/smfG2gHS/RoCEdAkBoUF0PpZHV9lChoBkdAbuy7TUiIL2gHS/NoCEdAkBqeXzDn/3V9lChoBkdAcr9XTVlPJ2gHTUABaAhHQJAbMvHtF8Z1fZQoaAZHQHFCMmrsByVoB00fAWgIR0CQHEK0lZ5idX2UKGgGR0Bx9UGt6ol2aAdL3GgIR0CQHIltj0+UdX2UKGgGR0ByRQRlHz6KaAdNDgFoCEdAkB1SVfNRnHV9lChoBkdAbiTzgdfb9WgHS/hoCEdAkB5580DU3HV9lChoBkdAcNOhqTKT0WgHS/xoCEdAkB6UT6BRRHV9lChoBkdAcbV6aLGaQWgHTQUBaAhHQJAfenHeaa11fZQoaAZHQG0n2R7qptJoB00NAWgIR0CQH4Y7q6e5dX2UKGgGR0Bw3UZl4C6paAdNJAFoCEdAkCAcZ9/jKnV9lChoBkdAcUfBXCCSR2gHS/JoCEdAkCBIt+TePHV9lChoBkdAcUHXlKbrkmgHTQwBaAhHQJAheyiVSoB1fZQoaAZHQHD8KIznA7BoB00nAWgIR0CQIZZflZHNdX2UKGgGR0BwxRk1/DtPaAdNDgFoCEdAkCIlsYVIqnV9lChoBkdAch4UeuFHrmgHTUUBaAhHQJAiyYBvJil1fZQoaAZHQHHiIMa0hNdoB00JAWgIR0CQIsKOT7l8dX2UKGgGR0Bwr21b7j1gaAdNBgFoCEdAkCPWFi8WbnV9lChoBkdAcNDWMS9M9WgHTQYBaAhHQJAkLPomoit1fZQoaAZHQHEmQAdXDFZoB02gAWgIR0CQJEHFPznSdX2UKGgGR0Bu1h1HOKO1aAdNEAFoCEdAkCU+PJaJRHV9lChoBkdAboCbYK6WgWgHS/9oCEdAkCX7p/wy7HV9lChoBkdAcPnMhouf3GgHS+5oCEdAkCZXqeK8+XV9lChoBkdAcl4xIJ7b+WgHS/BoCEdAkCZwLApKBnV9lChoBkdAclrcKPXCj2gHTToBaAhHQJAnhNN8E3d1fZQoaAZHQHGqWp2ll9VoB00OAWgIR0CQJ9m4y44IdX2UKGgGR0Byl3XBguyvaAdL5GgIR0CQKUksjFAFdX2UKGgGR0Bx0n6zmfXgaAdNPgFoCEdAkCmKY3Ns33V9lChoBkdAc1Tg/keZHGgHTSUBaAhHQJAqEbcXWOJ1fZQoaAZHQG/nrWy1NQFoB00WAWgIR0CQKjCMPz4DdX2UKGgGR0BxXle6Zpi7aAdNMAFoCEdAkCpL48EFGHV9lChoBkdAcQImxMWXTmgHTQUBaAhHQJAqTIikftB1fZQoaAZHQG4v974SHuZoB0v+aAhHQJArcpH7P6d1fZQoaAZHQHI3hz3h4t9oB0v+aAhHQJArhbzK9wp1fZQoaAZHQHMj32ys0YVoB0vdaAhHQJArmdoWYWt1fZQoaAZHQG2VZ3s5XEJoB00YAWgIR0CQK9VII4VAdX2UKGgGR0BxcLnp0OmSaAdL4mgIR0CQLFmg8KXwdX2UKGgGR0Bvzsan752yaAdL+2gIR0CQLUle4TbndX2UKGgGR0BxczWWhRIjaAdNIAFoCEdAkC5jPa+N+HV9lChoBkdAcbe/jbSJCWgHTQkBaAhHQJAu18G9pRJ1fZQoaAZHQHCq4c7yQPtoB00GAWgIR0CQLxItlI3BdX2UKGgGR0ByBL5VOsT4aAdL9WgIR0CQMKUG3WnTdX2UKGgGR0BxnD4YaYNRaAdL92gIR0CQMPXqJMxodX2UKGgGR0BwLHTkQwsYaAdNHQFoCEdAkDFfFFUhm3V9lChoBkdAca4uyNXHR2gHTQcBaAhHQJAxfduYQat1fZQoaAZHQHCKr6xgRbtoB00zAWgIR0CQMd9A5aNddX2UKGgGR0Bxxt9oexOdaAdL3WgIR0CQMf26TW5IdX2UKGgGR0BwY2LwWnCPaAdNJgFoCEdAkDJJMpPRA3V9lChoBkdAcRTmV7hNumgHTQMBaAhHQJAymqNp/PR1fZQoaAZHQHAhv9UCJXRoB0vtaAhHQJAy/FHavid1fZQoaAZHQHKUPICEHt5oB0vZaAhHQJAzbxQSBbx1fZQoaAZHQHF3Ls4T9KpoB003AWgIR0CQNBI5o4+9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:196a4c5dcba3041b40b250fab6a9c42fb82e0568fdc1a23279c7d87b72564179
3
+ size 147968
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79dfe0f24ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79dfe0f24f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79dfe0f25000>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79dfe0f25090>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79dfe0f25120>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79dfe0f251b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79dfe0f25240>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79dfe0f252d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79dfe0f25360>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79dfe0f253f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79dfe0f25480>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79dfe0f25510>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79df834ba880>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1733302694611329271,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoRWzvJNVg/tkgaPMx30b6idkM97dbmOwAAAAAAAAAAzeJOvPrvZT71vPe9B5aEvq7der1Kho87AAAAAAAAAAAAyVg9UCsxP8OCUrx1RLu+DU6NPR8bC7wAAAAAAAAAAM3KyL0uL4C8bFktvREbLrzZHo49WSoePgAAgD8AAIA/M6b1vcn8Jz/2bz86p8TRvsJuS71nGDQ9AAAAAAAAAAAAAV8+NO4yP+jQV77d6r2+J3rFPR8tFL4AAAAAAAAAAJoZSTl7FMM3ElYOvA7xhbxAYh282kNsPQAAgD8AAAAAYMY2PiQh3T5QvIa+Di7Dvumrgjww7SC+AAAAAAAAAABKpp0+WHyVP8XG3T5l2vu+bYv0PtAUoT0AAAAAAAAAAObOTL0vYZI/5PtAviMn0b5VRpK9IiduvAAAAAAAAAAAjWq0va4TiLp4HKK2U0GssT4OCTuYqr41AAAAAAAAgD9mxuk6BOWdPoUf272HAYy+SwwOO+7OPTwAAAAAAAAAAOj5l76hUkK9CDh4u6p2+blqIqc+qrexOgAAgD8AAIA/M/bLPFrKwD4zd9q9nnOMvhB2wb0SJJa9AAAAAAAAAAAzU6w8z8gHvL04c72ae8u8jPubPH5uDT4AAIA/AACAP4aUDb4NWgU/ZTguPoF2nr7TzZY92j/QPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVHAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMgcqOLiuOMAWyUS+6MAXSUR0CP4HJ5E+gUdX2UKGgGR0Bw57655JK8aAdNKwFoCEdAj+EnskY4yXV9lChoBkdAcT03xWkrPWgHS/BoCEdAj+IZggHNYHV9lChoBkdAcU3QJokAxWgHTUABaAhHQI/jYpYs/Y91fZQoaAZHQHEnwTmGM4toB0vvaAhHQI/j0xVQyh11fZQoaAZHQHD/AEQoTf1oB00KAWgIR0CP5A6wMYuTdX2UKGgGR0ByYbzmOlwcaAdL8mgIR0CP5wzXSSeRdX2UKGgGR0ByMeyGBWgfaAdNDwFoCEdAj+glBIFvAHV9lChoBkdAcrv+eOGTLWgHTRIBaAhHQI/oKa1Cw8p1fZQoaAZHQHBsLZ8KG+NoB00dAWgIR0CP6YKsuFpPdX2UKGgGR0BxeyM72criaAdL+WgIR0CP65iMHbAUdX2UKGgGR0Bw5fYZl4C7aAdNCgFoCEdAj+vnqNZNf3V9lChoBkdATfLI5o4+82gHS8VoCEdAj+xZNoJzDHV9lChoBkdAcgQD/EOy3WgHTQYBaAhHQI/stu1ndwh1fZQoaAZHQHHOcG1QZXNoB0vzaAhHQI/st3wCr951fZQoaAZHQHDsOu7pV0doB005AWgIR0CP7ZrTpgTidX2UKGgGR0BxAY2XLNfPaAdNAQFoCEdAj+3GNaQmu3V9lChoBkdAQjVHnU2DQWgHS89oCEdAj+7S/0ulGnV9lChoBkdAcl6v6CUX52gHTQkBaAhHQI/uz1bqyGB1fZQoaAZHQHCLwiml67doB01BAWgIR0CP79ZyMkyDdX2UKGgGR0Bu+7TSb6P9aAdNFwFoCEdAj/IPJzT4L3V9lChoBkdAcf26Ymb9ZWgHTQYBaAhHQI/2BtgrpaB1fZQoaAZHQHB5IH5aePJoB0v+aAhHQI/3R75VOsV1fZQoaAZHQHDA97ngYP5oB00zAWgIR0CP9+NpdrwfdX2UKGgGR0By3svvjOs1aAdNKAFoCEdAj/hu89Oh03V9lChoBkdAcutlzU7SzGgHS9poCEdAj/jAxJul43V9lChoBkdAcu3hUzbeuWgHS/RoCEdAj/ltXxOLznV9lChoBkdAckAgdOqNqGgHTZ4BaAhHQI/5zRKHwgF1fZQoaAZHQHINKslsxfxoB00MAWgIR0CP+6AtnPE9dX2UKGgGR0BxJVzOoo/iaAdNBAFoCEdAj/w0PYnOSnV9lChoBkdAc1OCQtBfKWgHS95oCEdAj/ytIsiB5HV9lChoBkdAbLZ55Z8rqmgHTRABaAhHQI/9HUWl/H51fZQoaAZHQHGa7tNSIgxoB005AWgIR0CP/eFZgXuWdX2UKGgGR0ByiRMxoIv8aAdNCQFoCEdAj/3xMFlkH3V9lChoBkdAcrgrFwT/Q2gHTR4BaAhHQI/+/zjFQ2x1fZQoaAZHQG9K2rXDm8xoB0vzaAhHQJAAIkRjBmB1fZQoaAZHQHFCR4dIXj5oB0vnaAhHQJABoPFvQ4V1fZQoaAZHQHBYtEG7jDNoB03DAWgIR0CQAj9jgAIZdX2UKGgGR0BykvYZl4C7aAdL/WgIR0CQA2oSL61tdX2UKGgGR0BucFktmL9/aAdL7GgIR0CQA3LbHp8ndX2UKGgGR0ByrlVvMr3CaAdL/WgIR0CQA8bmU4aQdX2UKGgGR0ByD35Jsfq5aAdNGQFoCEdAkBeBAGB4EHV9lChoBkdAUma4pc5bQmgHS7poCEdAkBfG8M/hVHV9lChoBkdAbP/0o0ALiWgHTR8BaAhHQJAYFClabF11fZQoaAZHQHJJAarFOwhoB00EAWgIR0CQGS/6fra/dX2UKGgGR0BvIEgpz90jaAdL9mgIR0CQGZd0aIepdX2UKGgGR0BxukmzByjpaAdL/WgIR0CQGZksjFAFdX2UKGgGR0BxSPmjj7yhaAdNYwFoCEdAkBoS9EkSmXV9lChoBkdAbid5/smfG2gHS/RoCEdAkBoUF0PpZHV9lChoBkdAbuy7TUiIL2gHS/NoCEdAkBqeXzDn/3V9lChoBkdAcr9XTVlPJ2gHTUABaAhHQJAbMvHtF8Z1fZQoaAZHQHFCMmrsByVoB00fAWgIR0CQHEK0lZ5idX2UKGgGR0Bx9UGt6ol2aAdL3GgIR0CQHIltj0+UdX2UKGgGR0ByRQRlHz6KaAdNDgFoCEdAkB1SVfNRnHV9lChoBkdAbiTzgdfb9WgHS/hoCEdAkB5580DU3HV9lChoBkdAcNOhqTKT0WgHS/xoCEdAkB6UT6BRRHV9lChoBkdAcbV6aLGaQWgHTQUBaAhHQJAfenHeaa11fZQoaAZHQG0n2R7qptJoB00NAWgIR0CQH4Y7q6e5dX2UKGgGR0Bw3UZl4C6paAdNJAFoCEdAkCAcZ9/jKnV9lChoBkdAcUfBXCCSR2gHS/JoCEdAkCBIt+TePHV9lChoBkdAcUHXlKbrkmgHTQwBaAhHQJAheyiVSoB1fZQoaAZHQHD8KIznA7BoB00nAWgIR0CQIZZflZHNdX2UKGgGR0BwxRk1/DtPaAdNDgFoCEdAkCIlsYVIqnV9lChoBkdAch4UeuFHrmgHTUUBaAhHQJAiyYBvJil1fZQoaAZHQHHiIMa0hNdoB00JAWgIR0CQIsKOT7l8dX2UKGgGR0Bwr21b7j1gaAdNBgFoCEdAkCPWFi8WbnV9lChoBkdAcNDWMS9M9WgHTQYBaAhHQJAkLPomoit1fZQoaAZHQHEmQAdXDFZoB02gAWgIR0CQJEHFPznSdX2UKGgGR0Bu1h1HOKO1aAdNEAFoCEdAkCU+PJaJRHV9lChoBkdAboCbYK6WgWgHS/9oCEdAkCX7p/wy7HV9lChoBkdAcPnMhouf3GgHS+5oCEdAkCZXqeK8+XV9lChoBkdAcl4xIJ7b+WgHS/BoCEdAkCZwLApKBnV9lChoBkdAclrcKPXCj2gHTToBaAhHQJAnhNN8E3d1fZQoaAZHQHGqWp2ll9VoB00OAWgIR0CQJ9m4y44IdX2UKGgGR0Byl3XBguyvaAdL5GgIR0CQKUksjFAFdX2UKGgGR0Bx0n6zmfXgaAdNPgFoCEdAkCmKY3Ns33V9lChoBkdAc1Tg/keZHGgHTSUBaAhHQJAqEbcXWOJ1fZQoaAZHQG/nrWy1NQFoB00WAWgIR0CQKjCMPz4DdX2UKGgGR0BxXle6Zpi7aAdNMAFoCEdAkCpL48EFGHV9lChoBkdAcQImxMWXTmgHTQUBaAhHQJAqTIikftB1fZQoaAZHQG4v974SHuZoB0v+aAhHQJArcpH7P6d1fZQoaAZHQHI3hz3h4t9oB0v+aAhHQJArhbzK9wp1fZQoaAZHQHMj32ys0YVoB0vdaAhHQJArmdoWYWt1fZQoaAZHQG2VZ3s5XEJoB00YAWgIR0CQK9VII4VAdX2UKGgGR0BxcLnp0OmSaAdL4mgIR0CQLFmg8KXwdX2UKGgGR0Bvzsan752yaAdL+2gIR0CQLUle4TbndX2UKGgGR0BxczWWhRIjaAdNIAFoCEdAkC5jPa+N+HV9lChoBkdAcbe/jbSJCWgHTQkBaAhHQJAu18G9pRJ1fZQoaAZHQHCq4c7yQPtoB00GAWgIR0CQLxItlI3BdX2UKGgGR0ByBL5VOsT4aAdL9WgIR0CQMKUG3WnTdX2UKGgGR0BxnD4YaYNRaAdL92gIR0CQMPXqJMxodX2UKGgGR0BwLHTkQwsYaAdNHQFoCEdAkDFfFFUhm3V9lChoBkdAca4uyNXHR2gHTQcBaAhHQJAxfduYQat1fZQoaAZHQHCKr6xgRbtoB00zAWgIR0CQMd9A5aNddX2UKGgGR0Bxxt9oexOdaAdL3WgIR0CQMf26TW5IdX2UKGgGR0BwY2LwWnCPaAdNJgFoCEdAkDJJMpPRA3V9lChoBkdAcRTmV7hNumgHTQMBaAhHQJAymqNp/PR1fZQoaAZHQHAhv9UCJXRoB0vtaAhHQJAy/FHavid1fZQoaAZHQHKUPICEHt5oB0vZaAhHQJAzbxQSBbx1fZQoaAZHQHF3Ls4T9KpoB003AWgIR0CQNBI5o4+9dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee76bdc03f8c64e9a6620ece1bec1d26b28d2a8579bab7b1e8f36658769d8a1c
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19ed86c15386207eae3cad334c0c8867c06d8c27733dffbb07e7f6d058a3e967
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.66358166915256, "std_reward": 21.67221718032136, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-04T09:23:51.753267"}