Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.19 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0804fad505273e3010a2324e2c948e8a8d730b946fd8eb10b9df7378f9ffb90
|
3 |
+
size 106940
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0bd8eb1000>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f0bd8ea66c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692531606744557502,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1Yh7PocUoDslntU+FV3bvaR44T5zAlu+FV3bvaR44T5zAlu+/B0VPwP85j7nG6Q8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdqC/v8Od6z6DAA0/5bJiv9wPnj+fzM2+PA2NPegztD8R3BC9CE6QP2qAfj87scS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADViHs+hxSgOyWe1T7GPO4+KOzYubKGwj4VXdu9pHjhPnMCW74FZeu/Eu7SP34xsr8VXdu9pHjhPnMCW74FZeu/Eu7SP34xsr/8HRU/A/zmPucbpDyzQr4914DSP6fIyL+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.24563916 0.00488526 0.41722217]\n [-0.10711113 0.44037354 -0.21387653]\n [-0.10711113 0.44037354 -0.21387653]\n [ 0.5824888 0.45114145 0.02003284]]",
|
34 |
+
"desired_goal": "[[-1.4970844 0.460188 0.55078906]\n [-0.8855422 1.234859 -0.40195176]\n [ 0.0688729 1.407834 -0.03536612]\n [ 1.1273813 0.99414694 -1.5366586 ]]",
|
35 |
+
"observation": "[[ 2.4563916e-01 4.8852596e-03 4.1722217e-01 4.6530741e-01\n -4.1374681e-04 3.7993389e-01]\n [-1.0711113e-01 4.4037354e-01 -2.1387653e-01 -1.8390204e+00\n 1.6478903e+00 -1.3921354e+00]\n [-1.0711113e-01 4.4037354e-01 -2.1387653e-01 -1.8390204e+00\n 1.6478903e+00 -1.3921354e+00]\n [ 5.8248878e-01 4.5114145e-01 2.0032836e-02 9.2900656e-02\n 1.6445569e+00 -1.5686234e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdru1vacWjb2Pwyk9XmwLPjWXFr65HCk+tQOzPH3mkL0gaCM+Xf2HPDqMEj5wQj0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.08873646 -0.06889086 0.04144626]\n [ 0.13615558 -0.14706118 0.16514863]\n [ 0.02185235 -0.07075212 0.1595769 ]\n [ 0.01660031 0.14311305 0.18482375]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9pEkSmIj4aMAWyUSwSMAXSUR0CmsOK2SdOJdX2UKGgGR7/Xaya/h2nsaAdLBGgIR0CmsL3QUpNLdX2UKGgGR7+5M36yjYZmaAdLAmgIR0CmsJptSAH3dX2UKGgGR7+xA5aNdZ7paAdLAmgIR0CmsHKo60Y1dX2UKGgGR7/OGhVU+9rXaAdLA2gIR0CmsOubRWtEdX2UKGgGR7/MSqU/wAlwaAdLA2gIR0CmsHpaq0dBdX2UKGgGR7/Xf9P1tfoiaAdLBGgIR0CmsMfO+qR2dX2UKGgGR7/crI5o4+8oaAdLBGgIR0CmsKSDAaegdX2UKGgGR7+pDkU9IPK/aAdLAWgIR0CmsHzMqz7edX2UKGgGR7/I0aZQYUFjaAdLA2gIR0CmsPK+8Gs4dX2UKGgGR7/AwOe8PFvRaAdLAmgIR0CmsM1YZEUkdX2UKGgGR7+0cENe+mFbaAdLAmgIR0CmsKn2ZiNLdX2UKGgGR7+3r5ZbILgGaAdLAmgIR0CmsPh/RVp9dX2UKGgGR7/EABDG96C2aAdLA2gIR0CmsIXeFcptdX2UKGgGR7/HscABDG96aAdLA2gIR0CmsNa6reZYdX2UKGgGR7/KRyOq//NraAdLA2gIR0CmsLNx+8XfdX2UKGgGR7/TBsyi22G7aAdLA2gIR0CmsQFpfx+bdX2UKGgGR7/KnMMZxaPkaAdLA2gIR0CmsI3YlIEsdX2UKGgGR7+7tF8XvYvnaAdLAmgIR0CmsNxBE8aGdX2UKGgGR7/B4ZdfLLZBaAdLAmgIR0CmsQa1stTUdX2UKGgGR7+pcJMQEpy7aAdLAWgIR0CmsN5uIhyKdX2UKGgGR7/SMfzSThYOaAdLA2gIR0CmsLsJ6Y3OdX2UKGgGR7/TZm7J4jbBaAdLBGgIR0CmsJdaEBbOdX2UKGgGR7/M1k1/DtPYaAdLA2gIR0CmsQ0sWfsedX2UKGgGR7/TBRyfcvduaAdLA2gIR0CmsOTm4iHJdX2UKGgGR7/OhYeT3Zf2aAdLA2gIR0CmsMGOuJUHdX2UKGgGR7/BUipvP1L8aAdLAmgIR0CmsJy8rZrYdX2UKGgGR7+6Fj/dZaFFaAdLAmgIR0CmsRKSgXdkdX2UKGgGR7+7ixVyWAwxaAdLAmgIR0CmsOpVCHARdX2UKGgGR7/LF+/gzguRaAdLA2gIR0CmsMj0Dlo2dX2UKGgGR7/KA4GUwBYFaAdLA2gIR0CmsKMt03fidX2UKGgGR7/PMFlkH2RJaAdLA2gIR0CmsRjwpe/pdX2UKGgGR7/Q287IT4+KaAdLA2gIR0CmsPDOC5EudX2UKGgGR7/MU0vXbuc+aAdLA2gIR0CmsNCKJl8PdX2UKGgGR7/KOXE61b7kaAdLA2gIR0CmsKr8R+SbdX2UKGgGR7/VWkadc0LuaAdLA2gIR0CmsPkLYwqRdX2UKGgGR7/YkDZDiOvMaAdLBGgIR0CmsSRHG0eEdX2UKGgGR7/LY4ACGN70aAdLA2gIR0CmsNkAYHgQdX2UKGgGR7+aqS5iExqPaAdLAWgIR0CmsNuFg2IgdX2UKGgGR7/IbfgrH2h7aAdLA2gIR0CmsLPeP7vYdX2UKGgGR7/BssQNCqp+aAdLAmgIR0CmsSqx9oexdX2UKGgGR7/VbgTAWSEEaAdLA2gIR0CmsQJq7AcldX2UKGgGR7+2AjIJZ4fPaAdLAmgIR0CmsLkNFz+4dX2UKGgGR7/CgL7XQMQVaAdLAmgIR0CmsS7TMJQddX2UKGgGR7+7x4IKMNtqaAdLAmgIR0CmsQaLn9vTdX2UKGgGR7/V61stTUAlaAdLA2gIR0CmsOMp5NXYdX2UKGgGR7+X8baRISUUaAdLAWgIR0CmsLtyo4uLdX2UKGgGR7+9ZfUnXumaaAdLAmgIR0CmsL+p4rz5dX2UKGgGR7/GEOAiFCb+aAdLA2gIR0CmsTZJbt7bdX2UKGgGR7/MH5aePJaJaAdLA2gIR0CmsQ4QBgeBdX2UKGgGR7/C3GXHBDXwaAdLA2gIR0CmsOrF4s3AdX2UKGgGR7/DV6u4gA6uaAdLAmgIR0CmsO6i0v4/dX2UKGgGR7/GKc/dIoVmaAdLA2gIR0CmsMbah6BzdX2UKGgGR7/KEDhcZ9/jaAdLA2gIR0CmsTyjYZl4dX2UKGgGR7/YCzTnaFmGaAdLBGgIR0CmsRZVXFLndX2UKGgGR7+2Aqd6LOzIaAdLAmgIR0CmsPLy1/lRdX2UKGgGR7/K9xIatLcsaAdLA2gIR0CmsM4k/r0KdX2UKGgGR7/Qpqh11W8zaAdLA2gIR0CmsUP2GqPwdX2UKGgGR7/S9+w1R+BpaAdLA2gIR0CmsR2RJVbSdX2UKGgGR7/RtVrAP/aQaAdLA2gIR0CmsPouf29MdX2UKGgGR7+1eY2Kl54XaAdLAmgIR0CmsUgO8TSLdX2UKGgGR7/MDQqqfe1saAdLA2gIR0CmsNSGahHtdX2UKGgGR7/RPxx1gYxdaAdLA2gIR0CmsSSa/h2odX2UKGgGR7/Gka/ATIvKaAdLA2gIR0CmsQFUZNwjdX2UKGgGR7/RWvKU3XI2aAdLA2gIR0CmsU9Whh6TdX2UKGgGR7/EfQKKHfuUaAdLA2gIR0CmsNvAfuCxdX2UKGgGR7+nqAz544ZNaAdLAWgIR0CmsVGB4D9wdX2UKGgGR7+3mKZUkv9MaAdLAmgIR0CmsQXAEdNndX2UKGgGR7/PlGPPszEaaAdLA2gIR0CmsStB4UvgdX2UKGgGR7/AQbMotthvaAdLAmgIR0CmsVWhqTKUdX2UKGgGR7/CSwGGEf1ZaAdLAmgIR0CmsTAssg+ydX2UKGgGR7/I/xDst03gaAdLA2gIR0CmsQzposZpdX2UKGgGR7/aZjx0+1SgaAdLBGgIR0CmsOVOTJQtdX2UKGgGR7/Je3x4IKMOaAdLA2gIR0CmsV18b70ndX2UKGgGR7/T23KB/ZuiaAdLA2gIR0CmsTdQ40djdX2UKGgGR7/QAiml67d0aAdLA2gIR0CmsRQOWjXWdX2UKGgGR7+3vuw5eZ5SaAdLAmgIR0CmsWJAt4A0dX2UKGgGR7/WkEs8PnSwaAdLBGgIR0CmsO66z3RHdX2UKGgGR7+ziQ1aW5YpaAdLAmgIR0CmsT0T+NtJdX2UKGgGR7+0TK1XvH94aAdLAmgIR0CmsWd6LOzIdX2UKGgGR7/IPVd5Y5ktaAdLA2gIR0CmsRv8IiTudX2UKGgGR7/J7Hhjvuw5aAdLA2gIR0CmsPck2P1ddX2UKGgGR7/TN2ki2UjcaAdLA2gIR0CmsUUUO/cndX2UKGgGR7/DdXT3IuGsaAdLAmgIR0CmsPzkZJkHdX2UKGgGR7/hWrOqvNeMaAdLBGgIR0CmsXQs5GSZdX2UKGgGR7+8r8R+SbH7aAdLAmgIR0CmsUwm3OObdX2UKGgGR7/f2h7E5yU+aAdLBGgIR0CmsSkcjqwAdX2UKGgGR7+ik/KQq7ROaAdLAWgIR0CmsSvaURnOdX2UKGgGR7+32ys0YTCcaAdLAmgIR0CmsQQo1DSgdX2UKGgGR7/A+9Jz1bqyaAdLAmgIR0CmsXoQnQY2dX2UKGgGR7/Nhky1uzhQaAdLA2gIR0CmsVPL5h0AdX2UKGgGR7/UjXnQpnYhaAdLA2gIR0CmsTJiqhlEdX2UKGgGR7+/D1oQFs55aAdLAmgIR0CmsVmb9ZRsdX2UKGgGR7+nigkC3gDSaAdLAWgIR0CmsTY0Mw10dX2UKGgGR7/WvFm4AjptaAdLBGgIR0CmsQ6BAfMfdX2UKGgGR7/UOoHcDbJwaAdLBGgIR0CmsYRs/IKddX2UKGgGR7/Rt4RmK64EaAdLA2gIR0CmsWAXVLBbdX2UKGgGR7/SfKISDh99aAdLA2gIR0CmsTy5I6KcdX2UKGgGR7/Jyvs7dSEUaAdLA2gIR0CmsRT8xbjcdX2UKGgGR7/SD0UXYUWVaAdLA2gIR0CmsYrQXyiFdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f15ad3346695f4f1bee9208d16c92d77f559a0c2fc46d884812b00dd7d3af1b8
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc38f004a3fc05ace824d8e8f4c1862dfeb2bfc354d3c1a58da0d49898b08e64
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.0
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0bd8eb1000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0bd8ea66c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692531606744557502, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1Yh7PocUoDslntU+FV3bvaR44T5zAlu+FV3bvaR44T5zAlu+/B0VPwP85j7nG6Q8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdqC/v8Od6z6DAA0/5bJiv9wPnj+fzM2+PA2NPegztD8R3BC9CE6QP2qAfj87scS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADViHs+hxSgOyWe1T7GPO4+KOzYubKGwj4VXdu9pHjhPnMCW74FZeu/Eu7SP34xsr8VXdu9pHjhPnMCW74FZeu/Eu7SP34xsr/8HRU/A/zmPucbpDyzQr4914DSP6fIyL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.24563916 0.00488526 0.41722217]\n [-0.10711113 0.44037354 -0.21387653]\n [-0.10711113 0.44037354 -0.21387653]\n [ 0.5824888 0.45114145 0.02003284]]", "desired_goal": "[[-1.4970844 0.460188 0.55078906]\n [-0.8855422 1.234859 -0.40195176]\n [ 0.0688729 1.407834 -0.03536612]\n [ 1.1273813 0.99414694 -1.5366586 ]]", "observation": "[[ 2.4563916e-01 4.8852596e-03 4.1722217e-01 4.6530741e-01\n -4.1374681e-04 3.7993389e-01]\n [-1.0711113e-01 4.4037354e-01 -2.1387653e-01 -1.8390204e+00\n 1.6478903e+00 -1.3921354e+00]\n [-1.0711113e-01 4.4037354e-01 -2.1387653e-01 -1.8390204e+00\n 1.6478903e+00 -1.3921354e+00]\n [ 5.8248878e-01 4.5114145e-01 2.0032836e-02 9.2900656e-02\n 1.6445569e+00 -1.5686234e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdru1vacWjb2Pwyk9XmwLPjWXFr65HCk+tQOzPH3mkL0gaCM+Xf2HPDqMEj5wQj0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08873646 -0.06889086 0.04144626]\n [ 0.13615558 -0.14706118 0.16514863]\n [ 0.02185235 -0.07075212 0.1595769 ]\n [ 0.01660031 0.14311305 0.18482375]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9pEkSmIj4aMAWyUSwSMAXSUR0CmsOK2SdOJdX2UKGgGR7/Xaya/h2nsaAdLBGgIR0CmsL3QUpNLdX2UKGgGR7+5M36yjYZmaAdLAmgIR0CmsJptSAH3dX2UKGgGR7+xA5aNdZ7paAdLAmgIR0CmsHKo60Y1dX2UKGgGR7/OGhVU+9rXaAdLA2gIR0CmsOubRWtEdX2UKGgGR7/MSqU/wAlwaAdLA2gIR0CmsHpaq0dBdX2UKGgGR7/Xf9P1tfoiaAdLBGgIR0CmsMfO+qR2dX2UKGgGR7/crI5o4+8oaAdLBGgIR0CmsKSDAaegdX2UKGgGR7+pDkU9IPK/aAdLAWgIR0CmsHzMqz7edX2UKGgGR7/I0aZQYUFjaAdLA2gIR0CmsPK+8Gs4dX2UKGgGR7/AwOe8PFvRaAdLAmgIR0CmsM1YZEUkdX2UKGgGR7+0cENe+mFbaAdLAmgIR0CmsKn2ZiNLdX2UKGgGR7+3r5ZbILgGaAdLAmgIR0CmsPh/RVp9dX2UKGgGR7/EABDG96C2aAdLA2gIR0CmsIXeFcptdX2UKGgGR7/HscABDG96aAdLA2gIR0CmsNa6reZYdX2UKGgGR7/KRyOq//NraAdLA2gIR0CmsLNx+8XfdX2UKGgGR7/TBsyi22G7aAdLA2gIR0CmsQFpfx+bdX2UKGgGR7/KnMMZxaPkaAdLA2gIR0CmsI3YlIEsdX2UKGgGR7+7tF8XvYvnaAdLAmgIR0CmsNxBE8aGdX2UKGgGR7/B4ZdfLLZBaAdLAmgIR0CmsQa1stTUdX2UKGgGR7+pcJMQEpy7aAdLAWgIR0CmsN5uIhyKdX2UKGgGR7/SMfzSThYOaAdLA2gIR0CmsLsJ6Y3OdX2UKGgGR7/TZm7J4jbBaAdLBGgIR0CmsJdaEBbOdX2UKGgGR7/M1k1/DtPYaAdLA2gIR0CmsQ0sWfsedX2UKGgGR7/TBRyfcvduaAdLA2gIR0CmsOTm4iHJdX2UKGgGR7/OhYeT3Zf2aAdLA2gIR0CmsMGOuJUHdX2UKGgGR7/BUipvP1L8aAdLAmgIR0CmsJy8rZrYdX2UKGgGR7+6Fj/dZaFFaAdLAmgIR0CmsRKSgXdkdX2UKGgGR7+7ixVyWAwxaAdLAmgIR0CmsOpVCHARdX2UKGgGR7/LF+/gzguRaAdLA2gIR0CmsMj0Dlo2dX2UKGgGR7/KA4GUwBYFaAdLA2gIR0CmsKMt03fidX2UKGgGR7/PMFlkH2RJaAdLA2gIR0CmsRjwpe/pdX2UKGgGR7/Q287IT4+KaAdLA2gIR0CmsPDOC5EudX2UKGgGR7/MU0vXbuc+aAdLA2gIR0CmsNCKJl8PdX2UKGgGR7/KOXE61b7kaAdLA2gIR0CmsKr8R+SbdX2UKGgGR7/VWkadc0LuaAdLA2gIR0CmsPkLYwqRdX2UKGgGR7/YkDZDiOvMaAdLBGgIR0CmsSRHG0eEdX2UKGgGR7/LY4ACGN70aAdLA2gIR0CmsNkAYHgQdX2UKGgGR7+aqS5iExqPaAdLAWgIR0CmsNuFg2IgdX2UKGgGR7/IbfgrH2h7aAdLA2gIR0CmsLPeP7vYdX2UKGgGR7/BssQNCqp+aAdLAmgIR0CmsSqx9oexdX2UKGgGR7/VbgTAWSEEaAdLA2gIR0CmsQJq7AcldX2UKGgGR7+2AjIJZ4fPaAdLAmgIR0CmsLkNFz+4dX2UKGgGR7/CgL7XQMQVaAdLAmgIR0CmsS7TMJQddX2UKGgGR7+7x4IKMNtqaAdLAmgIR0CmsQaLn9vTdX2UKGgGR7/V61stTUAlaAdLA2gIR0CmsOMp5NXYdX2UKGgGR7+X8baRISUUaAdLAWgIR0CmsLtyo4uLdX2UKGgGR7+9ZfUnXumaaAdLAmgIR0CmsL+p4rz5dX2UKGgGR7/GEOAiFCb+aAdLA2gIR0CmsTZJbt7bdX2UKGgGR7/MH5aePJaJaAdLA2gIR0CmsQ4QBgeBdX2UKGgGR7/C3GXHBDXwaAdLA2gIR0CmsOrF4s3AdX2UKGgGR7/DV6u4gA6uaAdLAmgIR0CmsO6i0v4/dX2UKGgGR7/GKc/dIoVmaAdLA2gIR0CmsMbah6BzdX2UKGgGR7/KEDhcZ9/jaAdLA2gIR0CmsTyjYZl4dX2UKGgGR7/YCzTnaFmGaAdLBGgIR0CmsRZVXFLndX2UKGgGR7+2Aqd6LOzIaAdLAmgIR0CmsPLy1/lRdX2UKGgGR7/K9xIatLcsaAdLA2gIR0CmsM4k/r0KdX2UKGgGR7/Qpqh11W8zaAdLA2gIR0CmsUP2GqPwdX2UKGgGR7/S9+w1R+BpaAdLA2gIR0CmsR2RJVbSdX2UKGgGR7/RtVrAP/aQaAdLA2gIR0CmsPouf29MdX2UKGgGR7+1eY2Kl54XaAdLAmgIR0CmsUgO8TSLdX2UKGgGR7/MDQqqfe1saAdLA2gIR0CmsNSGahHtdX2UKGgGR7/RPxx1gYxdaAdLA2gIR0CmsSSa/h2odX2UKGgGR7/Gka/ATIvKaAdLA2gIR0CmsQFUZNwjdX2UKGgGR7/RWvKU3XI2aAdLA2gIR0CmsU9Whh6TdX2UKGgGR7/EfQKKHfuUaAdLA2gIR0CmsNvAfuCxdX2UKGgGR7+nqAz544ZNaAdLAWgIR0CmsVGB4D9wdX2UKGgGR7+3mKZUkv9MaAdLAmgIR0CmsQXAEdNndX2UKGgGR7/PlGPPszEaaAdLA2gIR0CmsStB4UvgdX2UKGgGR7/AQbMotthvaAdLAmgIR0CmsVWhqTKUdX2UKGgGR7/CSwGGEf1ZaAdLAmgIR0CmsTAssg+ydX2UKGgGR7/I/xDst03gaAdLA2gIR0CmsQzposZpdX2UKGgGR7/aZjx0+1SgaAdLBGgIR0CmsOVOTJQtdX2UKGgGR7/Je3x4IKMOaAdLA2gIR0CmsV18b70ndX2UKGgGR7/T23KB/ZuiaAdLA2gIR0CmsTdQ40djdX2UKGgGR7/QAiml67d0aAdLA2gIR0CmsRQOWjXWdX2UKGgGR7+3vuw5eZ5SaAdLAmgIR0CmsWJAt4A0dX2UKGgGR7/WkEs8PnSwaAdLBGgIR0CmsO66z3RHdX2UKGgGR7+ziQ1aW5YpaAdLAmgIR0CmsT0T+NtJdX2UKGgGR7+0TK1XvH94aAdLAmgIR0CmsWd6LOzIdX2UKGgGR7/IPVd5Y5ktaAdLA2gIR0CmsRv8IiTudX2UKGgGR7/J7Hhjvuw5aAdLA2gIR0CmsPck2P1ddX2UKGgGR7/TN2ki2UjcaAdLA2gIR0CmsUUUO/cndX2UKGgGR7/DdXT3IuGsaAdLAmgIR0CmsPzkZJkHdX2UKGgGR7/hWrOqvNeMaAdLBGgIR0CmsXQs5GSZdX2UKGgGR7+8r8R+SbH7aAdLAmgIR0CmsUwm3OObdX2UKGgGR7/f2h7E5yU+aAdLBGgIR0CmsSkcjqwAdX2UKGgGR7+ik/KQq7ROaAdLAWgIR0CmsSvaURnOdX2UKGgGR7+32ys0YTCcaAdLAmgIR0CmsQQo1DSgdX2UKGgGR7/A+9Jz1bqyaAdLAmgIR0CmsXoQnQY2dX2UKGgGR7/Nhky1uzhQaAdLA2gIR0CmsVPL5h0AdX2UKGgGR7/UjXnQpnYhaAdLA2gIR0CmsTJiqhlEdX2UKGgGR7+/D1oQFs55aAdLAmgIR0CmsVmb9ZRsdX2UKGgGR7+nigkC3gDSaAdLAWgIR0CmsTY0Mw10dX2UKGgGR7/WvFm4AjptaAdLBGgIR0CmsQ6BAfMfdX2UKGgGR7/UOoHcDbJwaAdLBGgIR0CmsYRs/IKddX2UKGgGR7/Rt4RmK64EaAdLA2gIR0CmsWAXVLBbdX2UKGgGR7/SfKISDh99aAdLA2gIR0CmsTy5I6KcdX2UKGgGR7/Jyvs7dSEUaAdLA2gIR0CmsRT8xbjcdX2UKGgGR7/SD0UXYUWVaAdLA2gIR0CmsYrQXyiFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.19236095184460283, "std_reward": 0.1029541497903593, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-20T12:21:09.988492"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b67098a725a0e879aafaf36d5afdeb3a127e9ec246a769f4b218d3fb6332937
|
3 |
+
size 2636
|