update readme 1
Browse files
README.md
CHANGED
@@ -1,3 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
# PaReS-sentimenTw-political-PL
|
3 |
|
@@ -5,6 +32,7 @@ This model is a fine-tuned version of [dkleczek/bert-base-polish-cased-v1](https
|
|
5 |
Fine-tuned on 1k sample of manually annotated Twitter data.
|
6 |
|
7 |
|
|
|
8 |
Mapping (id2label):
|
9 |
mapping = {
|
10 |
0:'negative',
|
@@ -30,10 +58,10 @@ Training results: loss: 0.1358926964368792
|
|
30 |
|
31 |
It achieves the following results on the test set (10%):
|
32 |
|
33 |
-
Num examples = 100
|
34 |
-
Batch size = 8
|
35 |
-
Accuracy = 0.950
|
36 |
-
F1-macro = 0.944
|
37 |
|
38 |
precision recall f1-score support
|
39 |
|
@@ -41,7 +69,4 @@ It achieves the following results on the test set (10%):
|
|
41 |
1 0.958 0.885 0.920 26
|
42 |
2 0.923 0.960 0.941 25
|
43 |
|
44 |
-
accuracy 0.950 100
|
45 |
-
macro avg 0.947 0.941 0.944 100
|
46 |
-
weighted avg 0.950 0.950 0.950 100
|
47 |
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- pl
|
4 |
+
|
5 |
+
tags:
|
6 |
+
- text
|
7 |
+
- sentiment
|
8 |
+
- political
|
9 |
+
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
- f1
|
13 |
+
|
14 |
+
model-index:
|
15 |
+
- name: PaReS-sentimenTw-political-PL
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: sentiment-classification # Required. Example: automatic-speech-recognition
|
19 |
+
name: Text Classification # Optional. Example: Speech Recognition
|
20 |
+
dataset:
|
21 |
+
type: tweets # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
|
22 |
+
name: tweets_2020_electionsPL # Required. A pretty name for the dataset. Example: Common Voice (French)
|
23 |
+
metrics:
|
24 |
+
- type: f1 # Required. Example: wer. Use metric id from https://hf.co/metrics
|
25 |
+
value: 94.4 # Required. Example: 20.90
|
26 |
+
|
27 |
+
---
|
28 |
|
29 |
# PaReS-sentimenTw-political-PL
|
30 |
|
|
|
32 |
Fine-tuned on 1k sample of manually annotated Twitter data.
|
33 |
|
34 |
|
35 |
+
|
36 |
Mapping (id2label):
|
37 |
mapping = {
|
38 |
0:'negative',
|
|
|
58 |
|
59 |
It achieves the following results on the test set (10%):
|
60 |
|
61 |
+
Num examples = 100 \n
|
62 |
+
Batch size = 8 \n
|
63 |
+
Accuracy = 0.950 \n
|
64 |
+
F1-macro = 0.944 \n
|
65 |
|
66 |
precision recall f1-score support
|
67 |
|
|
|
69 |
1 0.958 0.885 0.920 26
|
70 |
2 0.923 0.960 0.941 25
|
71 |
|
|
|
|
|
|
|
72 |
|