--- language: - pl pipeline_tag: text-classification widget: - text: "Przykro patrzeć, a słuchać się nie da." example_title: "example 1" - text: "Oczywiście ze Pan Prezydent to nasza duma narodowa!!" example_title: "example 2" tags: - text - sentiment - politics metrics: - accuracy - f1 model-index: - name: PaReS-sentimenTw-political-PL results: - task: type: sentiment-classification # Required. Example: automatic-speech-recognition name: Text Classification # Optional. Example: Speech Recognition dataset: type: tweets # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: tweets_2020_electionsPL # Required. A pretty name for the dataset. Example: Common Voice (French) metrics: - type: f1 # Required. Example: wer. Use metric id from https://hf.co/metrics value: 94.4 # Required. Example: 20.90 --- # PaReS-sentimenTw-political-PL This model is a fine-tuned version of [dkleczek/bert-base-polish-cased-v1](https://huggingface.co/dkleczek/bert-base-polish-cased-v1) to predict 3-categorical sentiment. Fine-tuned on 1k sample of manually annotated Twitter data. Model developed as a part of ComPathos project: https://www.ncn.gov.pl/sites/default/files/listy-rankingowe/2020-09-30apsv2/streszczenia/497124-en.pdf ``` from transformers import pipeline model_path = "eevvgg/PaReS-sentimenTw-political-PL" sentiment_task = pipeline(task = "sentiment-analysis", model = model_path, tokenizer = model_path) sequence = ["Cała ta śmieszna debata była próbą ukrycia problemów gospodarczych jakie są i nadejdą, pytania w większości o mało istotnych sprawach", "Brawo panie ministrze!"] result = sentiment_task(sequence) labels = [i['label'] for i in result] # ['Negative', 'Positive'] ``` ## Intended uses & limitations Sentiment detection in Polish data (fine-tuned on tweets from political domain). ## Training and evaluation data - Trained for 3 epochs, mini-batch size of 8. - Training results: loss: 0.1358926964368792 It achieves the following results on the test set (10%): - No. examples = 100 - mini batch size = 8 - accuracy = 0.950 - macro f1 = 0.944 precision recall f1-score support 0 0.960 0.980 0.970 49 1 0.958 0.885 0.920 26 2 0.923 0.960 0.941 25