|
[paths] |
|
train = "data/engagement_spl_train.spacy" |
|
dev = "data/engagement_spl_dev.spacy" |
|
vectors = null |
|
init_tok2vec = null |
|
source = "en_core_web_trf" |
|
|
|
[system] |
|
gpu_allocator = "pytorch" |
|
seed = 0 |
|
|
|
[nlp] |
|
lang = "en" |
|
pipeline = ["transformer","tagger","parser","ner","trainable_transformer","span_finder","spancat"] |
|
batch_size = 16 |
|
disabled = [] |
|
before_creation = null |
|
after_creation = null |
|
after_pipeline_creation = null |
|
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} |
|
|
|
[components] |
|
|
|
[components.ner] |
|
factory = "ner" |
|
incorrect_spans_key = null |
|
moves = null |
|
scorer = {"@scorers":"spacy.ner_scorer.v1"} |
|
update_with_oracle_cut_size = 100 |
|
|
|
[components.ner.model] |
|
@architectures = "spacy.TransitionBasedParser.v2" |
|
state_type = "ner" |
|
extra_state_tokens = false |
|
hidden_width = 64 |
|
maxout_pieces = 2 |
|
use_upper = false |
|
nO = null |
|
|
|
[components.ner.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
upstream = "transformer" |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
|
|
[components.parser] |
|
factory = "parser" |
|
learn_tokens = false |
|
min_action_freq = 30 |
|
moves = null |
|
scorer = {"@scorers":"spacy.parser_scorer.v1"} |
|
update_with_oracle_cut_size = 100 |
|
|
|
[components.parser.model] |
|
@architectures = "spacy.TransitionBasedParser.v2" |
|
state_type = "parser" |
|
extra_state_tokens = false |
|
hidden_width = 64 |
|
maxout_pieces = 2 |
|
use_upper = false |
|
nO = null |
|
|
|
[components.parser.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
upstream = "transformer" |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
|
|
[components.span_finder] |
|
factory = "experimental_span_finder" |
|
max_length = 0 |
|
min_length = 0 |
|
predicted_key = "span_candidates" |
|
threshold = 0.2 |
|
training_key = ${vars.spans_key} |
|
|
|
[components.span_finder.model] |
|
@architectures = "spacy-experimental.SpanFinder.v1" |
|
|
|
[components.span_finder.model.scorer] |
|
@layers = "spacy.LinearLogistic.v1" |
|
nO = 2 |
|
nI = null |
|
|
|
[components.span_finder.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
upstream = "trainable_transformer" |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
|
|
[components.span_finder.scorer] |
|
@scorers = "spacy-experimental.span_finder_scorer.v1" |
|
predicted_key = ${components.span_finder.predicted_key} |
|
training_key = ${vars.spans_key} |
|
|
|
[components.spancat] |
|
factory = "spancat" |
|
max_positive = 2 |
|
scorer = {"@scorers":"spacy.spancat_scorer.v1"} |
|
spans_key = ${vars.spans_key} |
|
threshold = 0.5 |
|
|
|
[components.spancat.model] |
|
@architectures = "spacy.SpanCategorizer.v1" |
|
|
|
[components.spancat.model.reducer] |
|
@layers = "mean_max_reducer.v1.5" |
|
hidden_size = 128 |
|
dropout = 0.2 |
|
|
|
[components.spancat.model.scorer] |
|
@layers = "spacy.LinearLogistic.v1" |
|
nO = null |
|
nI = null |
|
|
|
[components.spancat.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
upstream = "trainable_transformer" |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
|
|
[components.spancat.suggester] |
|
@misc = "spacy-experimental.span_finder_suggester.v1" |
|
candidates_key = ${components.span_finder.predicted_key} |
|
|
|
[components.tagger] |
|
factory = "tagger" |
|
neg_prefix = "!" |
|
overwrite = false |
|
scorer = {"@scorers":"spacy.tagger_scorer.v1"} |
|
|
|
[components.tagger.model] |
|
@architectures = "spacy.Tagger.v2" |
|
nO = null |
|
normalize = false |
|
|
|
[components.tagger.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
upstream = "transformer" |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
|
|
[components.trainable_transformer] |
|
factory = "transformer" |
|
max_batch_items = 4096 |
|
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} |
|
|
|
[components.trainable_transformer.model] |
|
@architectures = "spacy-transformers.TransformerModel.v1" |
|
name = "egumasa/roberta-base-finetuned-academic" |
|
|
|
[components.trainable_transformer.model.get_spans] |
|
@span_getters = "spacy-transformers.strided_spans.v1" |
|
window = 196 |
|
stride = 147 |
|
|
|
[components.trainable_transformer.model.tokenizer_config] |
|
use_fast = true |
|
|
|
[components.transformer] |
|
factory = "transformer" |
|
max_batch_items = 4096 |
|
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} |
|
|
|
[components.transformer.model] |
|
@architectures = "spacy-transformers.TransformerModel.v3" |
|
name = "roberta-base" |
|
mixed_precision = false |
|
|
|
[components.transformer.model.get_spans] |
|
@span_getters = "spacy-transformers.strided_spans.v1" |
|
window = 128 |
|
stride = 96 |
|
|
|
[components.transformer.model.grad_scaler_config] |
|
|
|
[components.transformer.model.tokenizer_config] |
|
use_fast = true |
|
|
|
[components.transformer.model.transformer_config] |
|
|
|
[corpora] |
|
|
|
[corpora.dev] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths.dev} |
|
max_length = 0 |
|
gold_preproc = false |
|
limit = 0 |
|
augmenter = null |
|
|
|
[corpora.train] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths.train} |
|
max_length = 2000 |
|
gold_preproc = false |
|
limit = 0 |
|
augmenter = null |
|
|
|
[training] |
|
dev_corpus = "corpora.dev" |
|
train_corpus = "corpora.train" |
|
seed = ${system.seed} |
|
gpu_allocator = ${system.gpu_allocator} |
|
dropout = 0.1 |
|
accumulate_gradient = 1 |
|
patience = 2000 |
|
max_epochs = 0 |
|
max_steps = 20000 |
|
eval_frequency = 100 |
|
frozen_components = ["transformer","parser","tagger","ner"] |
|
annotating_components = ["span_finder"] |
|
before_to_disk = null |
|
|
|
[training.batcher] |
|
@batchers = "spacy.batch_by_words.v1" |
|
discard_oversize = false |
|
tolerance = 0.3 |
|
get_length = null |
|
|
|
[training.batcher.size] |
|
@schedules = "compounding.v1" |
|
start = 200 |
|
stop = 500 |
|
compound = 1.0005 |
|
t = 0.0 |
|
|
|
[training.logger] |
|
@loggers = "spacy.WandbLogger.v3" |
|
project_name = "spnacat_engagementv2" |
|
remove_config_values = ["paths.train","paths.dev","corpora.train.path","corpora.dev.path"] |
|
model_log_interval = 100 |
|
entity = "e-masaki0101" |
|
run_name = "OS_AdapR_max1-128do0.2_Cyc1000_RAdam_20221030" |
|
log_dataset_dir = null |
|
|
|
[training.optimizer] |
|
@optimizers = "RAdam.v1" |
|
beta1 = 0.9 |
|
beta2 = 0.999 |
|
L2_is_weight_decay = true |
|
L2 = 0.01 |
|
grad_clip = 1.0 |
|
use_averages = false |
|
eps = 0.00000001 |
|
|
|
[training.optimizer.learn_rate] |
|
@schedules = "cyclic_triangular.v1" |
|
min_lr = 0.00001 |
|
max_lr = 0.0001 |
|
period = 500 |
|
|
|
[training.score_weights] |
|
tag_acc = null |
|
dep_uas = null |
|
dep_las = null |
|
dep_las_per_type = null |
|
sents_p = null |
|
sents_r = null |
|
sents_f = null |
|
ents_f = null |
|
ents_p = null |
|
ents_r = null |
|
ents_per_type = null |
|
span_finder_span_candidates_f = 0.0 |
|
span_finder_span_candidates_p = 0.0 |
|
span_finder_span_candidates_r = 0.18 |
|
spans_sc_f = 0.64 |
|
spans_sc_p = 0.09 |
|
spans_sc_r = 0.09 |
|
lemma_acc = null |
|
|
|
[pretraining] |
|
|
|
[initialize] |
|
vectors = ${paths.vectors} |
|
init_tok2vec = ${paths.init_tok2vec} |
|
vocab_data = null |
|
lookups = null |
|
before_init = null |
|
after_init = null |
|
|
|
[initialize.components] |
|
|
|
[initialize.tokenizer] |
|
|
|
[vars] |
|
spans_key = "sc" |