--- tags: - spacy - token-classification language: - en model-index: - name: en_engagement_spl_RoBERTa_acad_max1_do02 results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.0 - name: NER Recall type: recall value: 0.0 - name: NER F Score type: f_score value: 0.0 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.0 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.0 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.0 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.0 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9024390244 --- | Feature | Description | | --- | --- | | **Name** | `en_engagement_spl_RoBERTa_acad_max1_do02` | | **Version** | `0.2.6.1130` | | **spaCy** | `>=3.3.0,<3.4.0` | | **Default Pipeline** | `transformer`, `tagger`, `parser`, `ner`, `trainable_transformer`, `span_finder`, `spancat` | | **Components** | `transformer`, `tagger`, `parser`, `ner`, `trainable_transformer`, `span_finder`, `spancat` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (130 labels for 4 components) | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` | | **`spancat`** | `COUNTER`, `DENY`, `ATTRIBUTE`, `MONOGLOSS`, `CONCUR`, `SOURCES`, `JUSTIFYING`, `PRONOUNCE`, `ENTERTAIN`, `EXPOSITORY`, `EXEMPLIFYING`, `TEXT_SEQUENCING`, `ENDOPHORIC`, `CITATION`, `COMPARATIVE`, `ENDORSE`, `GOAL_ANNOUNCING`, `SUMMATIVE` |
### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 0.00 | | `DEP_UAS` | 0.00 | | `DEP_LAS` | 0.00 | | `DEP_LAS_PER_TYPE` | 0.00 | | `SENTS_P` | 88.89 | | `SENTS_R` | 91.64 | | `SENTS_F` | 90.24 | | `ENTS_F` | 0.00 | | `ENTS_P` | 0.00 | | `ENTS_R` | 0.00 | | `SPAN_FINDER_SPAN_CANDIDATES_F` | 22.34 | | `SPAN_FINDER_SPAN_CANDIDATES_P` | 13.11 | | `SPAN_FINDER_SPAN_CANDIDATES_R` | 75.32 | | `SPANS_SC_F` | 68.94 | | `SPANS_SC_P` | 71.17 | | `SPANS_SC_R` | 66.84 | | `LEMMA_ACC` | 0.00 | | `TRAINABLE_TRANSFORMER_LOSS` | 2060.73 | | `SPAN_FINDER_LOSS` | 27815.12 | | `SPANCAT_LOSS` | 35915.90 |