[paths] train = "data/engagement_spl_train.spacy" dev = "data/engagement_spl_dev.spacy" vectors = null init_tok2vec = null source = "en_core_web_trf" [system] gpu_allocator = "pytorch" seed = 0 [nlp] lang = "en" pipeline = ["transformer","tagger","parser","ner","trainable_transformer","span_finder","spancat"] batch_size = 16 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} [components] [components.ner] factory = "ner" incorrect_spans_key = null moves = null scorer = {"@scorers":"spacy.ner_scorer.v1"} update_with_oracle_cut_size = 100 [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = false hidden_width = 64 maxout_pieces = 2 use_upper = false nO = null [components.ner.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 upstream = "transformer" pooling = {"@layers":"reduce_mean.v1"} [components.parser] factory = "parser" learn_tokens = false min_action_freq = 30 moves = null scorer = {"@scorers":"spacy.parser_scorer.v1"} update_with_oracle_cut_size = 100 [components.parser.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "parser" extra_state_tokens = false hidden_width = 64 maxout_pieces = 2 use_upper = false nO = null [components.parser.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 upstream = "transformer" pooling = {"@layers":"reduce_mean.v1"} [components.span_finder] factory = "experimental_span_finder" max_length = 0 min_length = 0 predicted_key = "span_candidates" threshold = 0.2 training_key = ${vars.spans_key} [components.span_finder.model] @architectures = "spacy-experimental.SpanFinder.v1" [components.span_finder.model.scorer] @layers = "spacy.LinearLogistic.v1" nO = 2 nI = null [components.span_finder.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 upstream = "trainable_transformer" pooling = {"@layers":"reduce_mean.v1"} [components.span_finder.scorer] @scorers = "spacy-experimental.span_finder_scorer.v1" predicted_key = ${components.span_finder.predicted_key} training_key = ${vars.spans_key} [components.spancat] factory = "spancat" max_positive = 2 scorer = {"@scorers":"spacy.spancat_scorer.v1"} spans_key = ${vars.spans_key} threshold = 0.5 [components.spancat.model] @architectures = "spacy.SpanCategorizer.v1" [components.spancat.model.reducer] @layers = "mean_max_reducer.v1.5" hidden_size = 128 dropout = 0.2 [components.spancat.model.scorer] @layers = "spacy.LinearLogistic.v1" nO = null nI = null [components.spancat.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 upstream = "trainable_transformer" pooling = {"@layers":"reduce_mean.v1"} [components.spancat.suggester] @misc = "spacy-experimental.span_finder_suggester.v1" candidates_key = ${components.span_finder.predicted_key} [components.tagger] factory = "tagger" neg_prefix = "!" overwrite = false scorer = {"@scorers":"spacy.tagger_scorer.v1"} [components.tagger.model] @architectures = "spacy.Tagger.v2" nO = null normalize = false [components.tagger.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 upstream = "transformer" pooling = {"@layers":"reduce_mean.v1"} [components.trainable_transformer] factory = "transformer" max_batch_items = 4096 set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} [components.trainable_transformer.model] @architectures = "spacy-transformers.TransformerModel.v1" name = "egumasa/roberta-base-finetuned-academic" [components.trainable_transformer.model.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 196 stride = 147 [components.trainable_transformer.model.tokenizer_config] use_fast = true [components.transformer] factory = "transformer" max_batch_items = 4096 set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} [components.transformer.model] @architectures = "spacy-transformers.TransformerModel.v3" name = "roberta-base" mixed_precision = false [components.transformer.model.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 [components.transformer.model.grad_scaler_config] [components.transformer.model.tokenizer_config] use_fast = true [components.transformer.model.transformer_config] [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 gold_preproc = false limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = 2000 gold_preproc = false limit = 0 augmenter = null [training] dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 2000 max_epochs = 0 max_steps = 20000 eval_frequency = 100 frozen_components = ["transformer","parser","tagger","ner"] annotating_components = ["span_finder"] before_to_disk = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.3 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 200 stop = 500 compound = 1.0005 t = 0.0 [training.logger] @loggers = "spacy.WandbLogger.v3" project_name = "spnacat_engagementv2" remove_config_values = ["paths.train","paths.dev","corpora.train.path","corpora.dev.path"] model_log_interval = 100 entity = "e-masaki0101" run_name = "OS_AdapR_max1-128do0.2_Cyc1000_RAdam_20221030" log_dataset_dir = null [training.optimizer] @optimizers = "RAdam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 [training.optimizer.learn_rate] @schedules = "cyclic_triangular.v1" min_lr = 0.00001 max_lr = 0.0001 period = 500 [training.score_weights] tag_acc = null dep_uas = null dep_las = null dep_las_per_type = null sents_p = null sents_r = null sents_f = null ents_f = null ents_p = null ents_r = null ents_per_type = null span_finder_span_candidates_f = 0.0 span_finder_span_candidates_p = 0.0 span_finder_span_candidates_r = 0.18 spans_sc_f = 0.64 spans_sc_p = 0.09 spans_sc_r = 0.09 lemma_acc = null [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.tokenizer] [vars] spans_key = "sc"