File size: 1,464 Bytes
52c9221 11c41c5 52c9221 a09b25b 192fe28 a09b25b 52c9221 4ca748a a09b25b 192fe28 52c9221 192fe28 52c9221 192fe28 52c9221 192fe28 7ca6c75 52c9221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# klue-roberta-base-kornli
* This model trained with Korean dataset.
* Input premise sentence and hypothesis sentence.
* You can use English, but don't expect accuracy.
* If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well.
klue-roberta-base-kornli DEMO: [Ainize DEMO](https://main-klue-roberta-base-kornli-ehdwns1516.endpoint.ainize.ai/)
klue-roberta-base-kornli API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/klue-roberta-base_kornli)
## Overview
Language model: [klue/roberta-base](https://huggingface.co/klue/roberta-base)
Language: Korean
Training data: [kakaobrain KorNLI](https://github.com/kakaobrain/KorNLUDatasets/tree/master/KorNLI)
Eval data: [kakaobrain KorNLI](https://github.com/kakaobrain/KorNLUDatasets/tree/master/KorNLI)
Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/klue-roberta-base_finetunning_ex)
## Usage
## In Transformers
```
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/klue-roberta-base-kornli")
classifier = pipeline(
"text-classification",
model="ehdwns1516/klue-roberta-base-kornli",
return_all_scores=True,
)
premise = "your premise"
hypothesis = "your hypothesis"
result = dict()
result[0] = classifier(premise + tokenizer.sep_token + hypothesis)[0]
```
|