File size: 1,364 Bytes
52c9221 e73236d 52c9221 4ca748a 52c9221 4ca748a 52c9221 4ca748a 52c9221 e73236d 52c9221 e73236d 52c9221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# klue-roberta-base-kornli
This model trained with Korean dataset.
Input premise sentence and hypothesis sentence.
You can use English, but don't expect accuracy.
If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well.
KLUE-RoBERTa-base-KorNLI DEMO: [Ainize DEMO](https://main-klue-roberta-base-kornli-ehdwns1516.endpoint.ainize.ai/)
KLUE-RoBERTa-base-KorNLI API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/klue-roberta-base_kornli)
## Overview
Language model: klue/roberta-base
Language: Korean
Training data: [kakaobrain KorNLI](https://github.com/kakaobrain/KorNLUDatasets/tree/master/KorNLI)
Eval data: [kakaobrain KorNLI](https://github.com/kakaobrain/KorNLUDatasets/tree/master/KorNLI)
Code: See [Ainize Workspace](https://a966119d3186.ngrok.io/notebooks/DJ/KLUE-NLI/klue-roberta-base-kornli.ipynb)
## Usage
## In Transformers
```
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/klue-roberta-base-kornli")
classifier = pipeline(
"text-classification",
model="ehdwns1516/klue-roberta-base-kornli",
return_all_scores=True,
)
premise = "your premise"
hypothesis = "your hypothesis"
result = dict()
result[0] = classifier(premise + tokenizer.sep_token + hypothesis)[0]
```
|