File size: 8,806 Bytes
0163a2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
from modules import scripts_postprocessing, devices, scripts, ui_components
import gradio as gr
from modules.ui_components import FormRow
import torch
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
from pixelization.models.networks import define_G
import pixelization.models.c2pGen
import gdown
pixelize_code = [
233356.8125, -27387.5918, -32866.8008, 126575.0312, -181590.0156,
-31543.1289, 50374.1289, 99631.4062, -188897.3750, 138322.7031,
-107266.2266, 125778.5781, 42416.1836, 139710.8594, -39614.6250,
-69972.6875, -21886.4141, 86938.4766, 31457.6270, -98892.2344,
-1191.5887, -61662.1719, -180121.9062, -32931.0859, 43109.0391,
21490.1328, -153485.3281, 94259.1797, 43103.1992, -231953.8125,
52496.7422, 142697.4062, -34882.7852, -98740.0625, 34458.5078,
-135436.3438, 11420.5488, -18895.8984, -71195.4141, 176947.2344,
-52747.5742, 109054.6562, -28124.9473, -17736.6152, -41327.1562,
69853.3906, 79046.2656, -3923.7344, -5644.5229, 96586.7578,
-89315.2656, -146578.0156, -61862.1484, -83956.4375, 87574.5703,
-75055.0469, 19571.8203, 79358.7891, -16501.5000, -147169.2188,
-97861.6797, 60442.1797, 40156.9023, 223136.3906, -81118.0547,
-221443.6406, 54911.6914, 54735.9258, -58805.7305, -168884.4844,
40865.9609, -28627.9043, -18604.7227, 120274.6172, 49712.2383,
164402.7031, -53165.0820, -60664.0469, -97956.1484, -121468.4062,
-69926.1484, -4889.0151, 127367.7344, 200241.0781, -85817.7578,
-143190.0625, -74049.5312, 137980.5781, -150788.7656, -115719.6719,
-189250.1250, -153069.7344, -127429.7891, -187588.2500, 125264.7422,
-79082.3438, -114144.5781, 36033.5039, -57502.2188, 80488.1562,
36501.4570, -138817.5938, -22189.6523, -222146.9688, -73292.3984,
127717.2422, -183836.3750, -105907.0859, 145422.8750, 66981.2031,
-9596.6699, 78099.4922, 70226.3359, 35841.8789, -116117.6016,
-150986.0156, 81622.4922, 113575.0625, 154419.4844, 53586.4141,
118494.8750, 131625.4375, -19763.1094, 75581.1172, -42750.5039,
97934.8281, 6706.7949, -101179.0078, 83519.6172, -83054.8359,
-56749.2578, -30683.6992, 54615.9492, 84061.1406, -229136.7188,
-60554.0000, 8120.2622, -106468.7891, -28316.3418, -166351.3125,
47797.3984, 96013.4141, 71482.9453, -101429.9297, 209063.3594,
-3033.6882, -38952.5352, -84920.6719, -5895.1543, -18641.8105,
47884.3633, -14620.0273, -132898.6719, -40903.5859, 197217.3750,
-128599.1328, -115397.8906, -22670.7676, -78569.9688, -54559.7070,
-106855.2031, 40703.1484, 55568.3164, 60202.9844, -64757.9375,
-32068.8652, 160663.3438, 72187.0703, -148519.5469, 162952.8906,
-128048.2031, -136153.8906, -15270.3730, -52766.3281, -52517.4531,
18652.1992, 195354.2188, -136657.3750, -8034.2622, -92699.6016,
-129169.1406, 188479.9844, 46003.7500, -93383.0781, -67831.6484,
-66710.5469, 104338.5234, 85878.8438, -73165.2031, 95857.3203,
71213.1250, 94603.1094, -30359.8125, -107989.2578, 99822.1719,
184626.3594, 79238.4531, -272978.9375, -137948.5781, -145245.8125,
75359.2031, 26652.7930, 50421.4141, 60784.4102, -18286.3398,
-182851.9531, -87178.7969, -13131.7539, 195674.8906, 59951.7852,
124353.7422, -36709.1758, -54575.4766, 77822.6953, 43697.4102,
-64394.3438, 113281.1797, -93987.0703, 221989.7188, 132902.5000,
-9538.8574, -14594.1338, 65084.9453, -12501.7227, 130330.6875,
-115123.4766, 20823.0898, 75512.4922, -75255.7422, -41936.7656,
-186678.8281, -166799.9375, 138770.6250, -78969.9531, 124516.8047,
-85558.5781, -69272.4375, -115539.1094, 228774.4844, -76529.3281,
-107735.8906, -76798.8906, -194335.2812, 56530.5742, -9397.7529,
132985.8281, 163929.8438, -188517.7969, -141155.6406, 45071.0391,
207788.3125, -125826.1172, 8965.3320, -159584.8438, 95842.4609,
-76929.4688
]
path_checkpoints = os.path.join(scripts.basedir(), "checkpoints")
path_pixelart_vgg19 = os.path.join(path_checkpoints, "pixelart_vgg19.pth")
path_160_net_G_A = os.path.join(path_checkpoints, "160_net_G_A.pth")
path_alias_net = os.path.join(path_checkpoints, "alias_net.pth")
class TorchHijackForC2pGen:
def __getattr__(self, item):
if item == 'load':
return self.load
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def load(self, filename, *args, **kwargs):
if filename == "./pixelart_vgg19.pth":
filename = path_pixelart_vgg19
return torch.load(filename, *args, **kwargs)
pixelization.models.c2pGen.torch = TorchHijackForC2pGen()
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.G_A_net = None
self.alias_net = None
def load(self):
os.makedirs(path_checkpoints, exist_ok=True)
missing = False
models = (
(path_pixelart_vgg19, "https://drive.google.com/uc?id=1VRYKQOsNlE1w1LXje3yTRU5THN2MGdMM"),
(path_160_net_G_A, "https://drive.google.com/uc?id=1i_8xL3stbLWNF4kdQJ50ZhnRFhSDh3Az"),
(path_alias_net, "https://drive.google.com/uc?id=17f2rKnZOpnO9ATwRXgqLz5u5AZsyDvq_"),
)
for path, url in models:
if not os.path.exists(path):
gdown.download(url, path)
if not os.path.exists(path):
missing = True
assert not missing, f'Missing checkpoints for pixelization - see console for download links. Download checkpoints manually and place them in {path_checkpoints}.'
with torch.no_grad():
self.G_A_net = define_G(3, 3, 64, "c2pGen", "instance", False, "normal", 0.02, [0])
self.alias_net = define_G(3, 3, 64, "antialias", "instance", False, "normal", 0.02, [0])
G_A_state = torch.load(path_160_net_G_A)
for p in list(G_A_state.keys()):
G_A_state["module." + str(p)] = G_A_state.pop(p)
self.G_A_net.load_state_dict(G_A_state)
alias_state = torch.load(path_alias_net)
for p in list(alias_state.keys()):
alias_state["module." + str(p)] = alias_state.pop(p)
self.alias_net.load_state_dict(alias_state)
def process(img):
ow, oh = img.size
nw = int(round(ow / 4) * 4)
nh = int(round(oh / 4) * 4)
left = (ow - nw) // 2
top = (oh - nh) // 2
right = left + nw
bottom = top + nh
img = img.crop((left, top, right, bottom))
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
return trans(img)[None, :, :, :]
def to_image(tensor, pixel_size, upscale_after):
img = tensor.data[0].cpu().float().numpy()
img = (np.transpose(img, (1, 2, 0)) + 1) / 2.0 * 255.0
img = img.astype(np.uint8)
img = Image.fromarray(img)
img = img.resize((img.size[0]//4, img.size[1]//4), resample=Image.Resampling.NEAREST)
if upscale_after:
img = img.resize((img.size[0]*pixel_size, img.size[1]*pixel_size), resample=Image.Resampling.NEAREST)
return img
class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
name = "Pixelization"
order = 10000
model = None
def ui(self):
with ui_components.InputAccordion(False, label="Pixelize") as enable:
with gr.Row():
upscale_after = gr.Checkbox(False, label="Keep resolution")
pixel_size = gr.Slider(minimum=1, maximum=16, step=1, label="Pixel size", value=4, elem_id="pixelization_pixel_size")
return {
"enable": enable,
"upscale_after": upscale_after,
"pixel_size": pixel_size,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, upscale_after, pixel_size):
if not enable:
return
if self.model is None:
model = Model()
model.load()
self.model = model
self.model.to(devices.device)
pp.image = pp.image.resize((pp.image.width * 4 // pixel_size, pp.image.height * 4 // pixel_size))
with torch.no_grad():
in_t = process(pp.image).to(devices.device)
feature = self.model.G_A_net.module.RGBEnc(in_t)
code = torch.asarray(pixelize_code, device=devices.device).reshape((1, 256, 1, 1))
adain_params = self.model.G_A_net.module.MLP(code)
images = self.model.G_A_net.module.RGBDec(feature, adain_params)
out_t = self.model.alias_net(images)
pp.image = to_image(out_t, pixel_size=pixel_size, upscale_after=upscale_after)
self.model.to(devices.cpu)
pp.info["Pixelization pixel size"] = pixel_size
|