--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openlm-research/open_llama_3b_v2 model-index: - name: qlora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: openlm-research/open_llama_3b_v2 model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false push_dataset_to_hub: datasets: - path: teknium/GPT4-LLM-Cleaned type: alpaca dataset_prepared_path: val_set_size: 0.05 adapter: qlora lora_model_dir: sequence_len: 1024 sample_packing: true lora_r: 8 lora_alpha: 32 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: output_dir: ./qlora-out gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true gptq_groupsize: gptq_model_v1: warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# qlora-out This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3161 | 0.0 | 1 | 1.5593 | | 1.1396 | 0.25 | 655 | 1.0154 | | 1.107 | 0.5 | 1310 | 0.9923 | | 1.1086 | 0.75 | 1965 | 0.9727 | | 0.9957 | 1.0 | 2620 | 0.9599 | | 1.0171 | 1.23 | 3275 | 0.9603 | | 0.7529 | 1.48 | 3930 | 0.9561 | | 1.1053 | 1.73 | 4585 | 0.9523 | | 0.8667 | 1.98 | 5240 | 0.9470 | | 0.8547 | 2.21 | 5895 | 0.9852 | | 0.8283 | 2.46 | 6550 | 0.9837 | | 1.0088 | 2.71 | 7205 | 0.9850 | | 0.8609 | 2.96 | 7860 | 0.9807 | | 0.8617 | 3.19 | 8515 | 1.0244 | | 0.4939 | 3.44 | 9170 | 1.0304 | | 0.6502 | 3.7 | 9825 | 1.0305 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.0