--- base_model: huggingface/CodeBERTa-small-v1 tags: - generated_from_trainer metrics: - accuracy model-index: - name: oo-method-test-model-bylibrary results: [] --- # oo-method-test-model-bylibrary This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3131 - Accuracy: 0.9207 - Best Accuracy: 0.9207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.34314e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 813 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Best Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:| | 0.4448 | 0.17 | 163 | 0.2735 | 0.9066 | 0.9066 | | 0.2779 | 0.33 | 326 | 0.2817 | 0.9185 | 0.9185 | | 0.1733 | 0.5 | 489 | 0.3446 | 0.9027 | 0.9185 | | 0.1861 | 0.66 | 652 | 0.3131 | 0.9207 | 0.9207 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3