--- base_model: huggingface/CodeBERTa-small-v1 tags: - generated_from_trainer metrics: - accuracy model-index: - name: oo-method-test-model-bylibrary results: [] datasets: - ejschwartz/oo-method-test-split --- # oo-method-test-model-bylibrary This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on the ejschwartz/oo-method-test-split dataset. It achieves the following results on the evaluation set: - Loss: 0.3303 - Accuracy: 0.9161 - Best Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.386135927313411e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 887 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Best Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:| | 0.3788 | 0.02 | 178 | 0.6188 | 0.8470 | 0.8470 | | 0.1456 | 0.04 | 356 | 0.6572 | 0.8519 | 0.8519 | | 0.17 | 0.05 | 534 | 0.4926 | 0.8798 | 0.8798 | | 0.1162 | 0.07 | 712 | 0.3303 | 0.9161 | 0.9161 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3