File size: 11,344 Bytes
c3aafe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
diff --git a/src/transformers/models/llama/convert_llama_weights_to_hf.py b/src/transformers/models/llama/convert_llama_weights_to_hf.py
index a0fbe4680..8b0ce2b13 100644
--- a/src/transformers/models/llama/convert_llama_weights_to_hf.py
+++ b/src/transformers/models/llama/convert_llama_weights_to_hf.py
@@ -17,10 +17,10 @@ import json
 import os
 import shutil
 import warnings
-
+from typing import List
 import torch
 
-from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast
+from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast, GenerationConfig
 from transformers.convert_slow_tokenizer import TikTokenConverter
 
 
@@ -85,8 +85,12 @@ NUM_SHARDS = {
     "65B": 8,
     "70B": 8,
     "70Bf": 8,
+    "405B": 8,
+    "405B-MP16": 16,
 }
 
+CONTEXT_LENGTH_FOR_VERSION = {"3.1": 131072, "3": 8192, "2": 4096, "1": 2048}
+
 
 def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
     return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
@@ -107,9 +111,10 @@ def write_model(
     input_base_path,
     model_size=None,
     safe_serialization=True,
-    llama_version=1,
+    llama_version="1",
     vocab_size=None,
     num_shards=None,
+    instruct=False,
 ):
     os.makedirs(model_path, exist_ok=True)
     tmp_model_path = os.path.join(model_path, "tmp")
@@ -125,18 +130,11 @@ def write_model(
     dims_per_head = dim // n_heads
     base = params.get("rope_theta", 10000.0)
     inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
-    if base > 10000.0 and llama_version != 3:
+    if base > 10000.0 and float(llama_version) < 3:
         max_position_embeddings = 16384
     else:
-        # Depending on the Llama version, the default max_position_embeddings has different values.
-        if llama_version == 1:
-            max_position_embeddings = 2048
-        elif llama_version == 2:
-            max_position_embeddings = 4096
-        elif llama_version == 3:
-            max_position_embeddings = 8192
-
-    vocab_size = vocab_size if vocab_size is not None else 32000
+        max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version]
+
     if params.get("n_kv_heads", None) is not None:
         num_key_value_heads = params["n_kv_heads"]  # for GQA / MQA
         num_key_value_heads_per_shard = num_key_value_heads // num_shards
@@ -144,8 +142,7 @@ def write_model(
     else:  # compatibility with other checkpoints
         num_key_value_heads = n_heads
         num_key_value_heads_per_shard = n_heads_per_shard
-        key_value_dim = dims_per_head * num_key_value_heads
-    print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim)
+        key_value_dim = dim
 
     # permute for sliced rotary
     def permute(w, n_heads, dim1=dim, dim2=dim):
@@ -159,11 +156,9 @@ def write_model(
         loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
     else:
         # Sharded
-        loaded = [
-            torch.load(os.path.join(input_base_path, file), map_location="cpu")
-            for file in os.listdir(input_base_path)
-            if file.endswith(".pth")
-        ]
+        checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")])
+        print("Loading in order:", checkpoint_list)
+        loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list]
     param_count = 0
     index_dict = {"weight_map": {}}
     for layer_i in range(n_layers):
@@ -263,7 +258,7 @@ def write_model(
             "lm_head.weight": loaded["output.weight"],
         }
     else:
-        concat_dim = 0 if llama_version == 3 else 1
+        concat_dim = 0 if llama_version in ['3', '3.1'] else 1
         state_dict = {
             "model.norm.weight": loaded[0]["norm.weight"],
             "model.embed_tokens.weight": torch.cat(
@@ -282,6 +277,18 @@ def write_model(
     write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
     ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
     multiple_of = params["multiple_of"] if "multiple_of" in params else 256
+
+    if llama_version in ['3', '3.1']:
+        bos_token_id = 128000
+
+        if instruct:
+            eos_token_id = [128001, 128008, 128009]
+        else:
+            eos_token_id = 128001
+    else:
+        bos_token_id = 1
+        eos_token_id = 2
+
     config = LlamaConfig(
         hidden_size=dim,
         intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
@@ -292,11 +299,21 @@ def write_model(
         vocab_size=vocab_size,
         rope_theta=base,
         max_position_embeddings=max_position_embeddings,
-        bos_token_id=128000 if llama_version == 3 else 1,
-        eos_token_id=128001 if llama_version == 3 else 2,
+        bos_token_id=bos_token_id,
+        eos_token_id=eos_token_id,
     )
     config.save_pretrained(tmp_model_path)
 
+    if instruct:
+        generation_config = GenerationConfig(
+            do_sample=True,
+            temperature=0.6,
+            top_p=0.9,
+            bos_token_id=bos_token_id,
+            eos_token_id=eos_token_id,
+        )
+        generation_config.save_pretrained(tmp_model_path)
+
     # Make space so we can load the model properly now.
     del state_dict
     del loaded
@@ -313,7 +330,7 @@ def write_model(
 
 
 class Llama3Converter(TikTokenConverter):
-    def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs):
+    def __init__(self, vocab_file, special_tokens=None, instruct=False, model_max_length=None, **kwargs):
         super().__init__(vocab_file, **kwargs)
         tokenizer = self.converted()
         chat_template = (
@@ -327,34 +344,27 @@ class Llama3Converter(TikTokenConverter):
             "{% endfor %}"
             "{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
         )
-        num_reserved_special_tokens = 256
-        special_tokens = [
-            "<|begin_of_text|>",
-            "<|end_of_text|>",
-            "<|reserved_special_token_0|>",
-            "<|reserved_special_token_1|>",
-            "<|reserved_special_token_2|>",
-            "<|reserved_special_token_3|>",
-            "<|start_header_id|>",
-            "<|end_header_id|>",
-            "<|reserved_special_token_4|>",
-            "<|eot_id|>",  # end of turn
-        ] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)]
         tokenizer.add_special_tokens(special_tokens)
 
         self.tokenizer = PreTrainedTokenizerFast(
             tokenizer_object=tokenizer,
             bos_token="<|begin_of_text|>",
-            eos_token="<|end_of_text|>",
-            chat_template=chat_template,
+            eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>",
+            chat_template=chat_template if instruct else None,
             model_input_names=["input_ids", "attention_mask"],
+            model_max_length=model_max_length,
         )
 
 
-def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
+def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False):
     tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
-    if llama_version == 3:
-        tokenizer = Llama3Converter(input_tokenizer_path).tokenizer
+    if llama_version in ["3", "3.1"]:
+        tokenizer = Llama3Converter(
+            input_tokenizer_path,
+            special_tokens,
+            instruct,
+            model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version]
+        ).tokenizer
     else:
         tokenizer = tokenizer_class(input_tokenizer_path)
     print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
@@ -362,6 +372,37 @@ def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
     return tokenizer
 
 
+DEFAULT_LLAMA_SPECIAL_TOKENS = {
+    "3": [
+        "<|begin_of_text|>",
+        "<|end_of_text|>",
+        "<|reserved_special_token_0|>",
+        "<|reserved_special_token_1|>",
+        "<|reserved_special_token_2|>",
+        "<|reserved_special_token_3|>",
+        "<|start_header_id|>",
+        "<|end_header_id|>",
+        "<|reserved_special_token_4|>",
+        "<|eot_id|>",  # end of turn
+    ]
+    + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)],
+    "3.1": [
+        "<|begin_of_text|>",
+        "<|end_of_text|>",
+        "<|reserved_special_token_0|>",
+        "<|reserved_special_token_1|>",
+        "<|finetune_right_pad_id|>",
+        "<|reserved_special_token_2|>",
+        "<|start_header_id|>",
+        "<|end_header_id|>",
+        "<|eom_id|>",  # end of message
+        "<|eot_id|>",  # end of turn
+        "<|python_tag|>",
+    ]
+    + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
+}
+
+
 def main():
     parser = argparse.ArgumentParser()
     parser.add_argument(
@@ -383,9 +424,9 @@ def main():
     # Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
     parser.add_argument(
         "--llama_version",
-        choices=[1, 2, 3],
-        default=1,
-        type=int,
+        choices=["1", "2", "3", "3.1"],
+        default="1",
+        type=str,
         help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size",
     )
     parser.add_argument(
@@ -394,11 +435,34 @@ def main():
         type=int,
         help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
     )
+    parser.add_argument(
+        "--special_tokens",
+        default=None,
+        type=List[str],
+        help="The list of special tokens that should be added to the model.",
+    )
+    parser.add_argument(
+        "--instruct",
+        default=False,
+        type=bool,
+        help="Whether the model is an instruct model or not. Will affect special tokens for llama 3.1.",
+    )
     args = parser.parse_args()
     if args.model_size is None and args.num_shards is None:
         raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
+    if args.special_tokens is None:
+        args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS[str(args.llama_version)]
+
     spm_path = os.path.join(args.input_dir, "tokenizer.model")
-    vocab_size = len(write_tokenizer(args.output_dir, spm_path, llama_version=args.llama_version))
+    vocab_size = len(
+        write_tokenizer(
+            args.output_dir,
+            spm_path,
+            llama_version=args.llama_version,
+            special_tokens=args.special_tokens,
+            instruct=args.instruct
+        )
+    )
     if args.model_size != "tokenizer_only":
         write_model(
             model_path=args.output_dir,
@@ -408,6 +472,7 @@ def main():
             llama_version=args.llama_version,
             vocab_size=vocab_size,
             num_shards=args.num_shards,
+            instruct=args.instruct
         )