File size: 11,344 Bytes
c3aafe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
diff --git a/src/transformers/models/llama/convert_llama_weights_to_hf.py b/src/transformers/models/llama/convert_llama_weights_to_hf.py
index a0fbe4680..8b0ce2b13 100644
--- a/src/transformers/models/llama/convert_llama_weights_to_hf.py
+++ b/src/transformers/models/llama/convert_llama_weights_to_hf.py
@@ -17,10 +17,10 @@ import json
import os
import shutil
import warnings
-
+from typing import List
import torch
-from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast
+from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast, GenerationConfig
from transformers.convert_slow_tokenizer import TikTokenConverter
@@ -85,8 +85,12 @@ NUM_SHARDS = {
"65B": 8,
"70B": 8,
"70Bf": 8,
+ "405B": 8,
+ "405B-MP16": 16,
}
+CONTEXT_LENGTH_FOR_VERSION = {"3.1": 131072, "3": 8192, "2": 4096, "1": 2048}
+
def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
@@ -107,9 +111,10 @@ def write_model(
input_base_path,
model_size=None,
safe_serialization=True,
- llama_version=1,
+ llama_version="1",
vocab_size=None,
num_shards=None,
+ instruct=False,
):
os.makedirs(model_path, exist_ok=True)
tmp_model_path = os.path.join(model_path, "tmp")
@@ -125,18 +130,11 @@ def write_model(
dims_per_head = dim // n_heads
base = params.get("rope_theta", 10000.0)
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
- if base > 10000.0 and llama_version != 3:
+ if base > 10000.0 and float(llama_version) < 3:
max_position_embeddings = 16384
else:
- # Depending on the Llama version, the default max_position_embeddings has different values.
- if llama_version == 1:
- max_position_embeddings = 2048
- elif llama_version == 2:
- max_position_embeddings = 4096
- elif llama_version == 3:
- max_position_embeddings = 8192
-
- vocab_size = vocab_size if vocab_size is not None else 32000
+ max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version]
+
if params.get("n_kv_heads", None) is not None:
num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
num_key_value_heads_per_shard = num_key_value_heads // num_shards
@@ -144,8 +142,7 @@ def write_model(
else: # compatibility with other checkpoints
num_key_value_heads = n_heads
num_key_value_heads_per_shard = n_heads_per_shard
- key_value_dim = dims_per_head * num_key_value_heads
- print(num_shards, num_key_value_heads, num_key_value_heads_per_shard, key_value_dim)
+ key_value_dim = dim
# permute for sliced rotary
def permute(w, n_heads, dim1=dim, dim2=dim):
@@ -159,11 +156,9 @@ def write_model(
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
else:
# Sharded
- loaded = [
- torch.load(os.path.join(input_base_path, file), map_location="cpu")
- for file in os.listdir(input_base_path)
- if file.endswith(".pth")
- ]
+ checkpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")])
+ print("Loading in order:", checkpoint_list)
+ loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list]
param_count = 0
index_dict = {"weight_map": {}}
for layer_i in range(n_layers):
@@ -263,7 +258,7 @@ def write_model(
"lm_head.weight": loaded["output.weight"],
}
else:
- concat_dim = 0 if llama_version == 3 else 1
+ concat_dim = 0 if llama_version in ['3', '3.1'] else 1
state_dict = {
"model.norm.weight": loaded[0]["norm.weight"],
"model.embed_tokens.weight": torch.cat(
@@ -282,6 +277,18 @@ def write_model(
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
multiple_of = params["multiple_of"] if "multiple_of" in params else 256
+
+ if llama_version in ['3', '3.1']:
+ bos_token_id = 128000
+
+ if instruct:
+ eos_token_id = [128001, 128008, 128009]
+ else:
+ eos_token_id = 128001
+ else:
+ bos_token_id = 1
+ eos_token_id = 2
+
config = LlamaConfig(
hidden_size=dim,
intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),
@@ -292,11 +299,21 @@ def write_model(
vocab_size=vocab_size,
rope_theta=base,
max_position_embeddings=max_position_embeddings,
- bos_token_id=128000 if llama_version == 3 else 1,
- eos_token_id=128001 if llama_version == 3 else 2,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
)
config.save_pretrained(tmp_model_path)
+ if instruct:
+ generation_config = GenerationConfig(
+ do_sample=True,
+ temperature=0.6,
+ top_p=0.9,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ )
+ generation_config.save_pretrained(tmp_model_path)
+
# Make space so we can load the model properly now.
del state_dict
del loaded
@@ -313,7 +330,7 @@ def write_model(
class Llama3Converter(TikTokenConverter):
- def __init__(self, vocab_file, num_reserved_special_tokens=256, **kwargs):
+ def __init__(self, vocab_file, special_tokens=None, instruct=False, model_max_length=None, **kwargs):
super().__init__(vocab_file, **kwargs)
tokenizer = self.converted()
chat_template = (
@@ -327,34 +344,27 @@ class Llama3Converter(TikTokenConverter):
"{% endfor %}"
"{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
)
- num_reserved_special_tokens = 256
- special_tokens = [
- "<|begin_of_text|>",
- "<|end_of_text|>",
- "<|reserved_special_token_0|>",
- "<|reserved_special_token_1|>",
- "<|reserved_special_token_2|>",
- "<|reserved_special_token_3|>",
- "<|start_header_id|>",
- "<|end_header_id|>",
- "<|reserved_special_token_4|>",
- "<|eot_id|>", # end of turn
- ] + [f"<|reserved_special_token_{i}|>" for i in range(5, num_reserved_special_tokens - 5)]
tokenizer.add_special_tokens(special_tokens)
self.tokenizer = PreTrainedTokenizerFast(
tokenizer_object=tokenizer,
bos_token="<|begin_of_text|>",
- eos_token="<|end_of_text|>",
- chat_template=chat_template,
+ eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>",
+ chat_template=chat_template if instruct else None,
model_input_names=["input_ids", "attention_mask"],
+ model_max_length=model_max_length,
)
-def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
+def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False):
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
- if llama_version == 3:
- tokenizer = Llama3Converter(input_tokenizer_path).tokenizer
+ if llama_version in ["3", "3.1"]:
+ tokenizer = Llama3Converter(
+ input_tokenizer_path,
+ special_tokens,
+ instruct,
+ model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version]
+ ).tokenizer
else:
tokenizer = tokenizer_class(input_tokenizer_path)
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
@@ -362,6 +372,37 @@ def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version=2):
return tokenizer
+DEFAULT_LLAMA_SPECIAL_TOKENS = {
+ "3": [
+ "<|begin_of_text|>",
+ "<|end_of_text|>",
+ "<|reserved_special_token_0|>",
+ "<|reserved_special_token_1|>",
+ "<|reserved_special_token_2|>",
+ "<|reserved_special_token_3|>",
+ "<|start_header_id|>",
+ "<|end_header_id|>",
+ "<|reserved_special_token_4|>",
+ "<|eot_id|>", # end of turn
+ ]
+ + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)],
+ "3.1": [
+ "<|begin_of_text|>",
+ "<|end_of_text|>",
+ "<|reserved_special_token_0|>",
+ "<|reserved_special_token_1|>",
+ "<|finetune_right_pad_id|>",
+ "<|reserved_special_token_2|>",
+ "<|start_header_id|>",
+ "<|end_header_id|>",
+ "<|eom_id|>", # end of message
+ "<|eot_id|>", # end of turn
+ "<|python_tag|>",
+ ]
+ + [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
+}
+
+
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
@@ -383,9 +424,9 @@ def main():
# Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.
parser.add_argument(
"--llama_version",
- choices=[1, 2, 3],
- default=1,
- type=int,
+ choices=["1", "2", "3", "3.1"],
+ default="1",
+ type=str,
help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size",
)
parser.add_argument(
@@ -394,11 +435,34 @@ def main():
type=int,
help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",
)
+ parser.add_argument(
+ "--special_tokens",
+ default=None,
+ type=List[str],
+ help="The list of special tokens that should be added to the model.",
+ )
+ parser.add_argument(
+ "--instruct",
+ default=False,
+ type=bool,
+ help="Whether the model is an instruct model or not. Will affect special tokens for llama 3.1.",
+ )
args = parser.parse_args()
if args.model_size is None and args.num_shards is None:
raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")
+ if args.special_tokens is None:
+ args.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS[str(args.llama_version)]
+
spm_path = os.path.join(args.input_dir, "tokenizer.model")
- vocab_size = len(write_tokenizer(args.output_dir, spm_path, llama_version=args.llama_version))
+ vocab_size = len(
+ write_tokenizer(
+ args.output_dir,
+ spm_path,
+ llama_version=args.llama_version,
+ special_tokens=args.special_tokens,
+ instruct=args.instruct
+ )
+ )
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir,
@@ -408,6 +472,7 @@ def main():
llama_version=args.llama_version,
vocab_size=vocab_size,
num_shards=args.num_shards,
+ instruct=args.instruct
)
|