File size: 2,177 Bytes
ea2fde0 6f7fa2a ea2fde0 9a49c64 ea2fde0 9a49c64 ea2fde0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: MarianMix_en-10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MarianMix_en-10
This model is a fine-tuned version of [Helsinki-NLP/opus-tatoeba-en-ja](https://huggingface.co/Helsinki-NLP/opus-tatoeba-en-ja) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0752
- Bleu: 14.601
- Gen Len: 45.8087
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 99
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|
| 2.1136 | 0.44 | 500 | 2.0044 | 0.2655 | 109.0201 |
| 1.1422 | 0.89 | 1000 | 1.7516 | 1.4123 | 71.0 |
| 0.9666 | 1.33 | 1500 | 1.5219 | 3.6611 | 64.6888 |
| 0.8725 | 1.78 | 2000 | 1.3606 | 4.6539 | 77.1641 |
| 0.7655 | 2.22 | 2500 | 1.2586 | 8.3456 | 60.3837 |
| 0.7149 | 2.67 | 3000 | 1.1953 | 11.2247 | 50.5921 |
| 0.6719 | 3.11 | 3500 | 1.1541 | 10.4303 | 54.3776 |
| 0.6265 | 3.56 | 4000 | 1.1186 | 13.3231 | 48.283 |
| 0.6157 | 4.0 | 4500 | 1.0929 | 13.8467 | 46.569 |
| 0.5736 | 4.44 | 5000 | 1.0848 | 14.2731 | 45.5035 |
| 0.5683 | 4.89 | 5500 | 1.0752 | 14.601 | 45.8087 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.17.0
- Tokenizers 0.10.3
|