|
import gradio as gr |
|
import torch |
|
import librosa |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
|
|
MODEL_NAME = "facebook/wav2vec2-large-960h" |
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME) |
|
|
|
def transcribe(audio_file): |
|
""" |
|
Transcribes speech from an uploaded audio file or live microphone input. |
|
""" |
|
try: |
|
|
|
audio, rate = librosa.load(audio_file, sr=16000) |
|
|
|
|
|
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values |
|
|
|
|
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
|
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids)[0] |
|
|
|
return transcription |
|
|
|
except Exception as e: |
|
return "Error processing file" |
|
|
|
|
|
interface = gr.Interface( |
|
fn=transcribe, |
|
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Speak or Upload Audio"), |
|
outputs="text", |
|
title="Wav2Vec2 Speech-to-Text Transcription", |
|
description="Speak into your microphone or upload an audio file to get an automatic transcription.", |
|
live=True |
|
) |
|
|
|
interface.launch(share=True) |